U
    hd)                    @   s
  d Z ddlZddlZddlZddlmZ ddlmZ ddl	m
Z
mZmZ ddlmZmZmZ ddlmZ ddlmZmZ dd	lmZ dd
lmZ edZejZedZedZdd Ze  Z!dZ"e#ee"Z$e%ee&ee"ee!egZ'e(e'Z)dd Z*dd Z+dd Z,dd Z-dd Z.dd Z/dd Z0dd  Z1d!d" Z2d#d$ Z3d%d& Z4d'd( Z5eej6d)d* Z7eejj6d+d* Z7d,d- Z8eejd.d/ Z9eejjeejj:eejj;eejj<d0d1 Z=eejjeejj:eejj;eejj<d2d3 Z>eej?eej@d4d5 ZAeejjBeejjCd6d7 ZDeejjCd8d9 ZEeejjCd:d; ZFeejjBd<d= ZGeejjCd>d? ZHd@dA ZIdBdC ZJdDdE ZKeejLdFdG ZMdHdI ZNeejOdJdK ZPeejOdLdM ZQdNdO ZReejOdPdQ ZSeejTdRdS ZUeejjTdTdU ZVeejjTdVdW ZWeejjTdXdY ZXeejYdZd[ ZZeejjYd\d] Z[eejYd^d_ Z\eejjYd`da Z]eejYdbdc Z^eejjYddde Z_dfdg Z`eejjYdhdi Zaeejbdjdk Zceejbdldm Zdeejjbdndm Zdeejjbdodp Zeeejfdqdr Zgeejjheejjidsdr Zgeejjidtdr Zgdudv Zjeejjidwdx Zkeejjhdydz Zleejmd{d| Zneejjod}d| Znd~d Zpeejjodd Zqeejrdd Zseejjtdd Zueejjtdd Zueejjveejjtdd Zueejjvdd Zweejjxdd Zyeejjxdd Zzeejjxdd Z{eejjxdd Z|eej}dd Z~dd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd ZeejjddÄ Zddń ZeejjddǄ ZeejjddɄ Zeejjdd˄ Zeejjdd̈́ Zddτ Zddф Zeejjddӄ Zeejjddӄ Zeejjddք Zeejjdd؄ Zeejjddڄ Zeejjdd܄ Zeejjddބ Zeejjddބ Zeejjdd Zeejjdd Zdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zdd Zeejădd Zeejjădd Zeejjƃdd Zeejjȃdd ZeejjɃd d ZeejjʃdddZeejj˃dddZeejj̃dd Zeejj̃dd	dZed
d Zeejj΃dd Zeejj΃dddZedd Zedd ZdS (  z6
Implement the random and np.random module functions.
    N)ir)is_nonelike)	intrinsicoverloadregister_jitable)Registryimpl_ret_untrackedimpl_ret_new_ref	signature)typescgutils)arrayobj)NumbaTypeErrorZ
randomimpl    @   c                 C   s   t t| S N)r   Constantint32_t)x r   Q/home/sam/Atlas/atlas_env/lib/python3.8/site-packages/numba/cpython/randomimpl.py	const_int   s    r   ip  c                 C   sT   |dkst d| }ttd}t|j||}|jd |jd |	|dS )z
    Get a pointer to the given thread-local random state
    (depending on *name*: "py" or "np").
    If the state isn't initialized, it is lazily initialized with
    system entropy.
    )pynpinternalznumba_get_%s_random_stater   ZreadnoneZnounwind)
AssertionErrorr   FunctionTypernd_state_ptr_tr   get_or_insert_functionmodule
attributesaddcall)contextbuildername	func_namefntyfnr   r   r   get_state_ptr4   s    r*   c                 C   s   t | |dS )z@
    Get a pointer to the thread-local Python random state.
    r   r*   r$   r%   r   r   r   get_py_state_ptrE   s    r-   c                 C   s   t | |dS )z?
    Get a pointer to the thread-local Numpy random state.
    r   r+   r,   r   r   r   get_np_state_ptrK   s    r.   c                 C   s   t | |dS )zB
    Get a pointer to the thread-local internal random state.
    r   r+   r,   r   r   r   get_internal_state_ptrQ   s    r/   c                 C   s   t | |ddS Nr   r   gep_inboundsr%   	state_ptrr   r   r   get_index_ptrX   s    r5   c                 C   s   t | |ddS Nr      r1   r3   r   r   r   get_array_ptr[   s    r8   c                 C   s   t | |ddS )Nr      r1   r3   r   r   r   get_has_gauss_ptr^   s    r:   c                 C   s   t | |ddS )Nr      r1   r3   r   r   r   get_gauss_ptra   s    r<   c                 C   s8   t t  tf}t| jj|d}|jd 	d |S )z<
    Get the internal function to shuffle the MT taste.
    Znumba_rnd_shuffler   Z	nocapture)
r   r   VoidTyper   r   r   functionr    argsZadd_attribute)r%   r(   r)   r   r   r   get_rnd_shuffled   s    r@   c           	   
   C   s"  t ||}||}|d|t}t||, t|}|||f |t	d| W 5 Q R X ||}t
||}|t||d|}||t	d}||| ||||t	d}|||||t	dt	d}|||||t	dt	d}||||t	d	}|S )
zB
    Get the next int32 generated by the PRNG at *state_ptr*.
    >=r   r7         l   VX:    l     _    )r5   loadicmp_unsignedN_constr   if_unlikelyr@   r#   storer   r8   r2   r"   xorlshrand_shl)	r$   r%   r4   ZidxptridxZneed_reshuffler)   Z	array_ptryr   r   r   get_next_int32o   s*    



rQ   c                 C   st   | t| ||td}| t| ||td}||t}||t}|||||t	tdt	tdS )zC
    Get the next double generated by the PRNG at *state_ptr*.
          g      Ag      @C)
rL   rQ   r   uitofpdoubleZfdivfaddfmulr   r   )r$   r%   r4   abr   r   r   get_next_double   s    
rZ   c                    s  t |jd fdd}t t td} d|} |\}}	|" ||}
  	|
t| W 5 Q R X |	r r| 
|}t }
s| 
|}  	|
t  	|tt td} || W 5 Q R X W 5 Q R X  |S )z2
    Get the next integer with width *nbits*.
    r   c                    s     | }t }| jj|jjk r8 ||j}n| jj|jjkrV ||j}r t|jd} 	||} 
||S  	||S d S r0   )subrQ   typewidthzexttruncnot_r   r   rL   rM   )nbitsshiftrP   maskr%   Zc32r$   is_numpyr4   r   r   get_shifted_int   s    z%get_next_int.<locals>.get_shifted_intr   <=)r   r   r\   r   Zalloca_once_valueint64_trG   if_elserJ   r^   r[   rQ   r"   rN   rF   )r$   r%   r4   ra   re   rf   retZis_32bZifsmallZiflargelowhightotalr   rd   r   get_next_int   s,    

 rn   c                 C   s   t | tjrtdS d S Nr   
isinstancer   Integer
_seed_implseedr   r   r   	seed_impl   s    rv   c                 C   s   t | tjrtdS d S Nr   rp   rt   r   r   r   rv      s    c                    s   t fdd  fddS )Nc                    s    fdd}t tjtj|fS )Nc                    sR   |\}t t  ttf}t|jj|d}|	|t
| | |f | tjd S )NZnumba_rnd_init)r   r   r=   r   r   r   r   r>   r    r#   r*   Zget_constantr   none)r$   r%   sigr?   Z
seed_valuer(   r)   
state_typer   r   codegen   s    z*_seed_impl.<locals>._impl.<locals>.codegen)r   r   voidZuint32)typingcontextru   r|   rz   r   r   _impl   s    z_seed_impl.<locals>._implc                    s    | S r   r   rt   r   r   r   <lambda>       z_seed_impl.<locals>.<lambda>r   rz   r   )r   r{   r   rs      s    
rs   c                      s   t dd   fddS )Nc                 S   s   dd }t tj|fS )Nc                 S   s   t | |d}t| ||S ro   r*   rZ   r$   r%   ry   r?   r4   r   r   r   r|      s    z+random_impl.<locals>._impl.<locals>.codegen)r   r   rU   r~   r|   r   r   r   r      s    zrandom_impl.<locals>._implc                      s     S r   r   r   r   r   r   r      r   zrandom_impl.<locals>.<lambda>r   r   r   r   r   random_impl   s    
r   c                      s   t dd   fddS )Nc                 S   s   dd }t tj|fS )Nc                 S   s   t | |d}t| ||S rw   r   r   r   r   r   r|      s    z,random_impl0.<locals>._impl.<locals>.codegen)r   r   float64r   r   r   r   r      s    zrandom_impl0.<locals>._implc                      s     S r   r   r   r   r   r   r      r   zrandom_impl0.<locals>.<lambda>r   r   r   r   r   random_impl0   s    
r   c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   r   randomsizer   r   r   r     r   zrandom_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   emptyflatranger   r   r   outout_flatrO   r   r   r   r     s
    
zrandom_impl1.<locals>._implr   rq   r   rr   UniTupledtyper   r   r   r   r   random_impl1   s    r   c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS ro   _double_preprocessorr   r   r   _gauss_implr~   locscaleloc_preprocessorscale_preprocessorr   r   r   r     s
    
zgauss_impl.<locals>._implc                    s
    | |S r   r   r   r   r   r   r   r     r   zgauss_impl.<locals>.<lambda>rq   r   Floatrr   r   r   r   r   r   
gauss_impl  s     

r   c                   C   s   dd S )Nc                   S   s   t jddS N              ?r   r   normalr   r   r   r   r      r   z np_gauss_impl0.<locals>.<lambda>r   r   r   r   r   np_gauss_impl0  s    r   c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS Nr   r   r   r   r   r   r   &  r   z np_gauss_impl1.<locals>.<lambda>rq   r   r   rr   r   r   r   r   np_gauss_impl1#  s    r   c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS rw   r   r   r   r   r   r   -  s
    
znp_gauss_impl2.<locals>._implc                    s
    | |S r   r   r   r   r   r   r   3  r   z np_gauss_impl2.<locals>.<lambda>r   r   r   r   r   np_gauss_impl2)  s     

r   c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   r   r   standard_normalr   r   r   r   r   9  r   z'standard_normal_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   =  s
    
z$standard_normal_impl1.<locals>._implr   r   r   r   r   standard_normal_impl16  s    r   c                 C   s   t | tjtjfr4t |tjtjfr4t|r4dd S t | tjtjfrt |tjtjfrt |tjs~t |tjrt |jtjrdd }|S d S )Nc                 S   s   t j| |S r   r   r   r   r   r   r   r   r   K  r   z np_gauss_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   rO   r   r   r   r   Q  s
    
znp_gauss_impl3.<locals>._implrq   r   r   rr   r   r   r   r   r   r   r   r   r   r   np_gauss_impl3F  s*     
 


r   c                    s    fdd}|S )Nc                     sh   d   d } d   d }| |  ||  }|dk r |dkr q@q t dt | | }||  || fS )zG
        Compute a pair of numbers on the normal distribution.
               @r   r          )mathsqrtlog)x1Zx2r2f_randomr   r   compute_gauss_pair[  s    z,_gauss_pair_impl.<locals>.compute_gauss_pairr   )r   r   r   r   r   _gauss_pair_implZ  s    r   c                    s    fdd}|S )Nc                    sJ  |j }| |}tjtjjd }t| |}tj||dd}t||}	t||}
t	||
|
}||\}}|( ||
|	| |td|
 W 5 Q R X |` | |t|tt|dd}t||d\}}|||	 ||| |td|
 W 5 Q R X W 5 Q R X |\}}| ||||||
|S )N)r   r   resultr&   r   r9   r   r7   )return_typeZget_data_typer   r   r*   r   alloca_oncer<   r:   Zis_truerF   ri   rJ   r   compile_internalr   r   r   r   Zunpack_tuplerV   rW   )r$   r%   ry   r?   tyZlltyr   r4   rj   Z	gauss_ptrZhas_gauss_ptrZ	has_gaussZthenZ	otherwisepairfirstsecondmusigmar   r   stater   r   r   m  s@    


$z_gauss_impl.<locals>._implr   )r   r   r   r   r   r   r   r   l  s    $r   c                    sr   t j  t| tjr6| jr( fddS  fddS n8t| tjrb| jdkrX fddS dd S ntd|  d S )Nc                    s   |  | S r   )Zsitofpr%   vr   r   r   r     r   z&_double_preprocessor.<locals>.<lambda>c                    s   |  | S r   )rT   r   r   r   r   r     r   r   c                    s   |  | S r   )Zfpextr   r   r   r   r     r   c                 S   s   |S r   r   )_builderr   r   r   r   r     r   z(Cannot convert {} to floating point type)	r   r   
DoubleTyperq   rr   signedr   bitwidth	TypeError)valuer   r   r   r     s    


r   c                    s(   t | tjr$tdd   fddS d S )Nc                 S   s   dd }t tj||fS )Nc           	   	   S   s|   |\}| d|td}| d|td}t|||| d}| j|t|f W 5 Q R X t| |d}t	| |||dS )NrA   A   ==r   z getrandbits() limited to 64 bitsr   F)
rG   r   r   rI   or_	call_convreturn_user_excOverflowErrorr*   rn   )	r$   r%   ry   r?   ra   	too_largeZ	too_smallmsgr4   r   r   r   r|     s    
z0getrandbits_impl.<locals>._impl.<locals>.codegen)r   r   Zuint64)r~   kr|   r   r   r   r     s    zgetrandbits_impl.<locals>._implc                    s    | S r   r   r   r   r   r   r     r   z"getrandbits_impl.<locals>.<lambda>)rq   r   rr   r   r   r   r   r   getrandbits_impl  s    
r   c              
      sN  t  td}td}	tj dd}
  |||
   d||8  	 	 
|
||	} || |
 W 5 Q R X   d||	8   	 
|
||	} || |
 W 5 Q R X  
|
t  d| d}j t|f W 5 Q R X ttjjg}t jj|d	 }d
krn |	n}  ||tjgt ttjtj dd fdd}d
kr.  d|	<\}}|  | W 5 Q R X | |  W 5 Q R X W 5 Q R X n|   	|  
|S )Nr   r7   nr   <>rg   zempty range for randrange()zllvm.ctlz.%sr   rc                     s~     d}   d} |   |  t dk} |} d|} || |  |  | d S )Nwhilez	while.endr   rA   )append_basic_blockbranchposition_at_endrn   r_   icmp_signedZcbranchrJ   )Zbbwhilebbendr   r   r%   r$   r   ra   Zrptrr   r4   r   r   r   get_num  s    




z _randrange_impl.<locals>.get_numr   )r*   r   r   r   r   rJ   r[   if_thenr   r"   rF   ZsdivrI   r   r   
ValueErrorr   Ztrue_bitr\   r   r>   r    r_   r#   r   r]   ri   mul)r$   r%   startstopstepr   r   r   zerooneZnptrwr   r(   r)   Znm1r   Zis_oneZ
is_not_oner   r   r   _randrange_impl  sD    


r   c                 C   s   t | tjrdd S d S )Nc                 S   s   t d| dS r6   r   	randranger   r   r   r   r     r   z"randrange_impl_1.<locals>.<lambda>rq   r   rr   r   r   r   r   randrange_impl_1   s    r   c                 C   s$   t | tjr t |tjr dd S d S )Nc                 S   s   t | |dS Nr7   r   r   r   r   r   r   r   	  r   z"randrange_impl_2.<locals>.<lambda>r   r  r   r   r   randrange_impl_2  s    r  c                 C   s,   |j | kr |jrtjjS tjjS dd S d S )Nc                 S   s   |S r   r   )r   r   Z_tyr   r   r   r     r   z)_randrange_preprocessor.<locals>.<lambda>)r   r   r   Z	IRBuilderZsextr^   )r   r   r   r   r   _randrange_preprocessor  s
    
r  c                    s   t | tjrt |tjrt |tjrt| j|j|jt| j|j|j}tj|t|t	|| t	||t	||t
fdd  fddS d S )Nc                    s&   fdd}t  ||||fS )Nc              	      sD   |\}}}|| }|| }|| }t | |||| dS ro   )r   r$   r%   ry   r?   r   r   r   )	llvm_typer   start_preprocessorstep_preprocessorstop_preprocessorr   r   r|   #  s    
  z0randrange_impl_3.<locals>._impl.<locals>.codegenr
   )r~   r   r   r   r|   )int_tyr  r   r  r  r  r   r   r   !  s    zrandrange_impl_3.<locals>._implc                    s    | ||S r   r   )r   r   r   r   r   r   r   ,  r   z"randrange_impl_3.<locals>.<lambda>rq   r   rr   maxr   r   Zfrom_bitwidthr   IntTyper  r   )r   r   r   r   r   )r   r	  r  r   r  r  r  r   randrange_impl_3  s    





r  c                 C   s$   t | tjr t |tjr dd S d S )Nc                 S   s   t | |d dS r   r   r  r   r   r   r   2  r   z randint_impl_1.<locals>.<lambda>r   r  r   r   r   randint_impl_1/  s    r  c                 C   s   t | tjrdd S d S )Nc                 S   s   t jd| S r0   r   r   randintrl   r   r   r   r   8  r   z#np_randint_impl_1.<locals>.<lambda>r   r  r   r   r   np_randint_impl_15  s    r  c                    s   t | tjrt |tjrt| j|jt| j|j}tj|t|t	|| t	||t
fdd  fddS d S )Nc                    s"   fdd}t  |||fS )Nc              	      sB   |\}}|| }|| }t  d}t| |||| dS )Nr7   r   )r   r   r   r  )r  r   r  r  r   r   r|   H  s      z1np_randint_impl_2.<locals>._impl.<locals>.codegenr
   )r~   rk   rl   r|   )r	  r  r   r  r  r   r   r   F  s    z np_randint_impl_2.<locals>._implc                    s
    | |S r   r   rk   rl   r   r   r   r   Q  r   z#np_randint_impl_2.<locals>.<lambda>r
  )rk   rl   r   r   )r   r	  r  r   r  r  r   np_randint_impl_2;  s    



r  c                    s   t | tjr(t |tjr(t|r(dd S t | tjrt |tjrt |tjsft |tjrt |jtjrt| j|j}tt	d|   fdd}|S d S )Nc                 S   s   t j| |S r   r  rk   rl   r   r   r   r   r   X  r   z#np_randint_impl_3.<locals>.<lambda>intc                    s:   t j| d}|j}t|jD ]}t j| |||< q|S N)r   )r   r   r   r   r   r   r  rk   rl   r   r   r   rO   Zresult_typer   r   r   `  s
    z np_randint_impl_3.<locals>._impl)
rq   r   rr   r   r   r   r  r   getattrr   )rk   rl   r   r   r   r   r  r   np_randint_impl_3T  s"    

r  c                   C   s   dd S )Nc                   S   s   t ddS r   r   uniformr   r   r   r   r   k  r   zuniform_impl0.<locals>.<lambda>r   r   r   r   r   uniform_impl0i  s    r  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   r  r   r   r   r   r   p  r   z"np_uniform_impl0.<locals>.<lambda>r   r   r   r   r   np_uniform_impl0n  s    r   c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t | dS r   r  rk   r   r   r   r   v  r   zuniform_impl1.<locals>.<lambda>r   r!  r   r   r   uniform_impl1s  s    r"  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r!  r   r   r   r   |  r   z"np_uniform_impl1.<locals>.<lambda>r   r!  r   r   r   np_uniform_impl1y  s    r#  c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS ro   r   r   r   r   uniform_implr~   rk   rl   Zlow_preprocessorZhigh_preprocessorr   r   r   r     s      zuniform_impl2.<locals>._implc                    s
    | |S r   r   r  r   r   r   r     r   zuniform_impl2.<locals>.<lambda>r   r  r   r   r   uniform_impl2  s     

r'  c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS rw   r$  r&  r   r   r   r     s      znp_uniform_impl2.<locals>._implc                    s
    | |S r   r   r  r   r   r   r     r   z"np_uniform_impl2.<locals>.<lambda>r   r  r   r   r   np_uniform_impl2  s     

r(  c                    s    fdd}|S )Nc           	         sT   t | |}|\}} ||}||}|||}t| ||}|||||S r   )r*   ZfsubrZ   rV   rW   )	r$   r%   ry   r?   r4   rX   rY   r]   r   a_preprocessorb_preprocessorr   r   r   impl  s    

zuniform_impl.<locals>.implr   )r   r*  r+  r,  r   r)  r   r%    s    r%  c                 C   s   t | tjtjfr4t |tjtjfr4t|r4dd S t | tjtjfrt |tjtjfrt |tjs~t |tjrt |jtjrdd }|S d S )Nc                 S   s   t j| |S r   r  r  r   r   r   r     r   z"np_uniform_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r  r   r   r   r     s
    
znp_uniform_impl3.<locals>._implr   )rk   rl   r   r   r   r   r   np_uniform_impl3  s*     
 


r-  c                 C   s4   dd }t | tjtjfr0t |tjtjfr0|S d S )Nc                 S   s@   t   }d}||kr&d| }||  } }| ||  t||   S )N      ?r   r   r   r   )rk   rl   ucr   r   r   r     s    
z triangular_impl_2.<locals>._implr   )rk   rl   r   r   r   r   triangular_impl_2  s     
r2  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   s`   || kr| S t   }||  ||   }||krFd| }d| }||  } }| ||  t||   S r   r/  )rk   rl   moder0  r1  r   r   r   r     s    
 triangular_impl_3.<locals>._implr   )rk   rl   r3  r   r   r   r   triangular_impl_3  s     
r5  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   sb   || kr| S t j }||  ||   }||krHd| }d| }||  } }| ||  t||   S r   )r   r   r   r   )rk   r3  rl   r0  r1  r   r   r   r     s    

r4  r   )rk   r3  rl   r   r   r   r   r5    s     
c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| ||S r   )r   r   
triangular)rk   rl   r3  r   r   r   r   r     s   
z!triangular_impl.<locals>.<lambda>c                 S   s8   t |}|j}t|jD ]}t j| ||||< q|S r   )r   r   r   r   r   r   r6  )rk   rl   r3  r   r   r   rO   r   r   r   r     s
    
ztriangular_impl.<locals>._implr   )rk   rl   r3  r   r   r   r   r   triangular_impl  s    r7  c                 C   s2   t | tjtjfr.t |tjtjfr.ttjS d S r   )rq   r   r   rr   _gammavariate_implr   alphabetar   r   r   gammavariate_impl  s
     
r<  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r   r   gammar:  r   r   r   r   
  r   z#gammavariate_impl.<locals>.<lambda>r   r?  r   r   r   r<    s    c                 C   s4   t | tjtjfr0t |tjtjfr0ttjjS d S r   )rq   r   r   rr   r8  r   r   r9  r   r   r   r<    s
     
c                    s    fdd}|S )Nc                    s  dt d }| dks|dkr&td| dkrt d|  d }| t d }| | }  }d|  k rpdk stqV qVd   }t |d|  | }| t | }	|| | }
|||  |	 }|| d|
  dks|t |
krV|	| S qVn| dkrt d    | S   }t j|  t j }|| }|dkrB|d|   }	nt || |   }	  }|dkr~||	| d  krqn|t |	 krqq|	| S d	S )
z1Gamma distribution.  Taken from CPython.
        r   g      @r   z*gammavariate: alpha and beta must be > 0.0r   g      @gHz>gP?N)r   r   r   r   expe)r:  r;  SG_MAGICCONSTainvbbbcccu1u2r   r   zr   r0  rY   pr   r   r   r     s@    
"


z!_gammavariate_impl.<locals>._implr   r   r   r   r   r   r8    s    7r8  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r=  r:  r;  r   r   r   r   r   R  r   zgamma_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r>  r:  r;  r   r   r   rO   r   r   r   r   V  s
    
zgamma_impl.<locals>._implr   r:  r;  r   r   r   r   r   
gamma_implO  s    rN  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r   r   standard_gammar:  r   r   r   r   r   b  r   z%standard_gamma_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   rP  r:  r   r   r   rO   r   r   r   r   f  s
    
z"standard_gamma_impl.<locals>._implr   r:  r   r   r   r   r   standard_gamma_impl_  s    rT  c                 C   s2   t | tjtjfr.t |tjtjfr.ttjS d S r   )rq   r   r   rr   _betavariate_implr   gammavariater9  r   r   r   betavariate_implo  s
     
rW  c                 C   s4   t | tjtjfr0t |tjtjfr0ttjjS d S r   )rq   r   r   rr   rU  r   r   r>  r9  r   r   r   rW  v  s
     
c                    s    fdd}|S )Nc                    s,    | d}|dkrdS || |d  S dS )z0Beta distribution.  Taken from CPython.
        r   r   Nr   )r:  r;  rP   r>  r   r   r   ~  s    
z _betavariate_impl.<locals>._implr   )r>  r   r   rX  r   rU  }  s    
rU  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   r;  rK  r   r   r   r     r   zbeta_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r;  rL  r   r   r   r     s
    
zbeta_impl.<locals>._implr   rM  r   r   r   	beta_impl  s    rY  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   t dt   |  S )z;Exponential distribution.  Taken from CPython.
            r   )r   r   r   )lambdr   r   r   r     s    zexpovariate_impl.<locals>._implrq   r   r   )rZ  r   r   r   r   expovariate_impl  s    
r\  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   t dtj   |  S r   r   r   r   r   )r   r   r   r   r     s    exponential_impl.<locals>._implr   )r   r   r   r   r   exponential_impl  s    r_  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   exponential)r   r   r   r   r   r     r   z"exponential_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r`  )r   r   r   r   rO   r   r   r   r     s
    
r^  r   )r   r   r   r   r   r   r_    s    c                  C   s   dd } | S )Nc                   S   s   t dtj   S r   r]  r   r   r   r   r     s    r^  r   r   r   r   r   r_    s    c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   )r   r   standard_exponentialr   r   r   r   r     r   z+standard_exponential_impl.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   ra  r   r   r   r   r     s
    
z(standard_exponential_impl.<locals>._implr   r   r   r   r   standard_exponential_impl  s    
rb  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   	lognormalr   r   r   r   r     r   z$np_lognormal_impl0.<locals>.<lambda>r   r   r   r   r   np_lognormal_impl0  s    re  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   rc  r   r   r   r   r     r   z%np_log_normal_impl1.<locals>.<lambda>r   rf  r   r   r   np_log_normal_impl1  s    rg  c                 C   s4   t | tjtjfr0t |tjtjfr0ttjjS d S r   )rq   r   r   rr   _lognormvariate_implr   r   r   r   r   r   r   r   np_log_normal_impl2  s
     
rj  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   rc  )r   r   r   r   r   r   r     r   z lognormal_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   rd  )r   r   r   r   r   rO   r   r   r   r     s
    
zlognormal_impl.<locals>._implr   )r   r   r   r   r   r   r   lognormal_impl  s    rk  c                 C   s&   t | tjr"t |tjr"ttjS d S r   )rq   r   r   rh  r   gaussri  r   r   r   lognormvariate_impl  s    rm  c                    s    fddS )Nc                    s   t  | |S r   )r   r@  ri  Z_gaussr   r   r     r   z&_lognormvariate_impl.<locals>.<lambda>r   rn  r   rn  r   rh    s    rh  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   dt    }d|d|    S )z)Pareto distribution.  Taken from CPython.r   )r   r:  r0  r   r   r   r     s    z!paretovariate_impl.<locals>._implr[  r:  r   r   r   r   paretovariate_impl  s    rq  c                 C   s   t | tjrdd }|S d S )Nc                 S   s"   dt j  }d|d|    d S )Nr   r7   r   ro  r   r   r   r     s    pareto_impl.<locals>._implr[  rp  r   r   r   pareto_impl  s    rs  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   paretorQ  r   r   r   r   "  r   zpareto_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   rt  rR  r   r   r   r   &  s
    
rr  r   rS  r   r   r   rs    s    c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s$   dt    }| t| d|   S )z*Weibull distribution.  Taken from CPython.r   )r   r   r   )r:  r;  r0  r   r   r   r   3  s    z"weibullvariate_impl.<locals>._implr   )r:  r;  r   r   r   r   weibullvariate_impl/  s     
ru  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s"   dt j  }t| d|   S r   r   r   r   r   )r;  r0  r   r   r   r   ?  s    zweibull_impl.<locals>._implr   )r;  r   r   r   r   weibull_impl<  s    rw  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   weibull)r;  r   r   r   r   r   J  r   zweibull_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   rx  )r;  r   r   r   rO   r   r   r   r   N  s
    
zweibull_impl2.<locals>._implr   )r;  r   r   r   r   r   weibull_impl2G  s    ry  c                 C   s&   t | tjr"t |tjr"ttjS d S r   )rq   r   r   _vonmisesvariate_implr   r   kappar   r   r   vonmisesvariate_implW  s    r}  c                 C   s(   t | tjr$t |tjr$ttjjS d S r   )rq   r   r   rz  r   r   r{  r   r   r   r}  ]  s    c                    s    fdd}|S )Nc                    s   |dkrdt j    S d| }|t d||   }  }t t j| }|||  }  }|d||  k s|d| t | kr6qq6d| }|| d||   }	  }
|
dkr| t |	 dt j  }n| t |	 dt j  }|S )zCircular data distribution.  Taken from CPython.
        Note the algorithm in Python 2.6 and Numpy is different:
        http://bugs.python.org/issue17141
        gư>r   r.  r   )r   pir   cosr@  acos)r   r|  sr   rF  rH  drG  qr   u3thetar   r   r   r   d  s"    &z$_vonmisesvariate_impl.<locals>._implr   rJ  r   r   r   rz  c  s    (rz  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   vonmises)r   r|  r   r   r   r   r     r   zvonmises_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )r   r|  r   r   r   rO   r   r   r   r     s
    
zvonmises_impl.<locals>._implr   )r   r|  r   r   r   r   r   vonmises_impl  s    r  c                 C   s.   t | tjr*t |tjtjfr*dd }|S d S )Nc                 S   sJ  | dk rt dd|  kr$dks.n t d|dkr:dS |dkrF| S |dk}|rZd| }d| }d}||  }|dkr|d	K }| d	L } ||  }| dksntqn| | }t| |d
t|| d   }d}|dkrFd}	tj }
|}|	|kr|
|kr||r| |	 n|	7 }|d8 }q|
|8 }
|	d7 }	| |	 d | | |	|  }qq|S )z
            Binomial distribution.  Numpy's variant of the BINV algorithm
            is used.
            (Numpy uses BTPE for n*p >= 30, though)
            r   zbinomial(): n <= 0r   r   zbinomial(): p outside of [0, 1]r.  r7   gx0 r9         $@)r   r   minr   r   r   r   )r   rI  Zflippedr  ZnitersqnZnp_prodboundrm   XUZpxr   r   r   r     sF     


 binomial_impl.<locals>._implrq   r   rr   r   r   rI  r   r   r   r   binomial_impl  s     
1r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   binomial)r   rI  r   r   r   r   r     r   zbinomial_impl.<locals>.<lambda>c                 S   s<   t j|t jd}|j}t|jD ]}t j| |||< q |S r  )r   r   intpr   r   r   r   r  )r   rI  r   r   r   rO   r   r   r   r     s
    r  r   )r   rI  r   r   r   r   r   r    s    c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   dt j| d  S Nr   rO  )dfr   r   r   r     s    zchisquare_impl.<locals>._implr   r  r   r   r   r   chisquare_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r   r   	chisquarerI  r   r   r   r   r     r   z!chisquare_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rI  r   r   r   rO   r   r   r   r     s
    
zchisquare_impl2.<locals>._implr   rI  r   r   r   r   r   chisquare_impl2  s    r  c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s    t j| | t j||   S r   r  )numdenomr   r   r   r     s    f_impl.<locals>._implr   )r  r  r   r   r   r   f_impl   s     
r  c                 C   sj   t | tjtjfr4t |tjtjfr4t|r4dd S t |tjsZt |tjrft |jtjrfdd }|S d S )Nc                 S   s   t j| |S r   )r   r   r   )r  r  r   r   r   r   r     r   zf_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   )r  r  r   r   r   rO   r   r   r   r     s
    
r  r   )r  r  r   r   r   r   r   r    s     
c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   | dks| dkrt dd|  }| dkrhtd}|  }}tj }||krd||9 }||7 }|d7 }qB|S ttdtj  t| S d S )Nr   r   z geometric(): p outside of (0, 1]gUUUUUU?r7   )r   r  r   r   r   ceilr   )rI  r  r  sumprodr  r   r   r   r      s    

geometric_impl.<locals>._implr   )rI  r   r   r   r   geometric_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   	geometricr  r   r   r   r   8  r   z geometric_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   int64r   r   r   r   r  r  r   r   r   r   <  s
    r  r   r  r   r   r   r  5  s    c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s(   dt j  }| |tt|   S r   rv  r   r   r  r   r   r   r   I  s    zgumbel_impl.<locals>._implr   )r   r   r   r   r   r   gumbel_implE  s     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   gumbelr   r   r   r   r   S  r   zgumbel_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r   W  s
    
zgumbel_impl3.<locals>._implr   r   r   r   r   gumbel_impl3P  s    r  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   s   t |t |  t | }tt|| }|}t |}|dkrl|dkrl|ttj |||   8 }|d8 }q2t || }| |krt || S |S dS )z'Numpy's algorithm for hypergeometric().r   r   r7   N)r  floatr  r   floorr   r   )ngoodnbadnsamplesZd1Zd2YKZr   r   r   r   e  s     
"hypergeometric_impl.<locals>._implr   )r  r  r  r   r   r   r   hypergeometric_impl`  s     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| ||S r   )r   r   hypergeometric)r  r  r  r   r   r   r   r   {  s    z%hypergeometric_impl.<locals>.<lambda>c                 S   s>   t j|t jd}|j}t|jD ]}t j| ||||< q |S r  )r   r   r  r   r   r   r   r  )r  r  r  r   r   r   rO   r   r   r   r     s
    r  r   )r  r  r  r   r   r   r   r   r  x  s    c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   laplacer   r   r   r   r     r   zlaplace_impl0.<locals>.<lambda>r   r   r   r   r   laplace_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   zlaplace_impl1.<locals>.<lambda>r   r   r   r   r   laplace_impl1  s    r  c                 C   s,   t | tjtjfr(t |tjtjfr(tS d S r   )rq   r   r   rr   laplace_implr   r   r   r   laplace_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  r   r   r   r   r     r   zlaplace_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
zlaplace_impl3.<locals>._implr   r   r   r   r   laplace_impl3  s    r  c                 C   sF   t j }|dk r(| |t||   S | |td| |   S d S )Nr.  r   rv  r  r   r   r   r    s    
r  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   logisticr   r   r   r   r     r   z logistic_impl0.<locals>.<lambda>r   r   r   r   r   logistic_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   z logistic_impl1.<locals>.<lambda>r   r   r   r   r   logistic_impl1  s    r  c                 C   s,   t | tjtjfr(t |tjtjfr(tS d S r   )rq   r   r   rr   logistic_implr   r   r   r   logistic_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  r   r   r   r   r     r   z logistic_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
zlogistic_impl3.<locals>._implr   r   r   r   r   logistic_impl3  s    r  c                 C   s$   t j }| |t|d|    S r   rv  r  r   r   r   r    s    
r  c                 C   s   | dks| dkrt dtd|  }tj }|| kr<dS tj }dt||  }||| krtdt|t|  S ||krdS dS q&dS )z"Numpy's algorithm for logseries().r   r   z logseries(): p outside of (0, 1]r7   r9   N)r   r   r   r   r   r@  r  )rI  r   Vr  r  r   r   r   _logseries_impl  s    

r  c                 C   s   t | tjtjfrtS d S r   )rq   r   r   rr   r  )rI  r   r   r   logseries_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   	logseriesr  r   r   r   r     r   z logseries_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   r  r   r   r   r   r  r  r   r   r   r     s
    zlogseries_impl.<locals>._implr   r  r   r   r   r    s    c                 C   s.   t | tjr*t |tjtjfr*dd }|S d S )Nc                 S   sJ   | dkrt d|dk s |dkr(t dtj| d| | }tj|S )Nr   znegative_binomial(): n <= 0r   r   z(negative_binomial(): p outside of [0, 1])r   r   r   r>  poisson)r   rI  r  r   r   r   r   	  s    z%negative_binomial_impl.<locals>._implr  r  r   r   r   negative_binomial_impl  s     
r  c                   C   s   dd S )Nc                   S   s   t jdS r   r   r   r  r   r   r   r   r     r   zpoisson_impl0.<locals>.<lambda>r   r   r   r   r   poisson_impl0  s    r  c                    s.   t | tjtjfr*tdd   fddS d S )Nc                    s$   t |  fdd}ttj||fS )Nc              	      s  t | |}tj|tdd}|d}|d}|\}||}|d|ttd}	|	|	N t
tttf}
t|jj|
d}||||f}||| || W 5 Q R X || || tjjtj  fdd	}| ||||}||| || || ||S )
Nrj   r   bbcontr   rA   r  Znumba_poisson_ptrsc                    sV   | dk rt d| dkrdS  |  }d}d} }||9 }||krH|S |d7 }q.dS )ag  Numpy's algorithm for poisson() on small *lam*.

                    This method is invoked only if the parameter lambda of the
                    distribution is small ( < 10 ). The algorithm used is
                    described in "Knuth, D. 1969. 'Seminumerical Algorithms.
                    The Art of Computer Programming' vol 2.
                    r   zpoisson(): lambda < 0r   r   r7   Nr   )lamZenlamr  r  r  _expr   r   r   poisson_impl<  s    
zCpoisson_impl1.<locals>._impl.<locals>.codegen.<locals>.poisson_impl)r.   r   r   rh   r   Zfcmp_orderedr   r   rU   r   r   r   r   r>   r    r#   rJ   r   r   r   r   r   r@  r   rF   )r$   r%   ry   r?   r4   Zretptrr  r   r  Zbig_lamr(   r)   rj   r  Zlam_preprocessorr  r   r|      s8    









z-poisson_impl1.<locals>._impl.<locals>.codegen)r   r   r   r  )r~   r  r|   r   r  r   r     s    7zpoisson_impl1.<locals>._implc                    s    | S r   r   r  r   r   r   r   X  r   zpoisson_impl1.<locals>.<lambda>r   r  r   r   r   poisson_impl1  s    
;r  c                 C   sj   t | tjtjfr"t|r"dd S t | tjtjfrft |tjsZt |tjrft |jtjrfdd }|S d S )Nc                 S   s   t j| S r   r  )r  r   r   r   r   r   ^  r   zpoisson_impl2.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   r  r   r   r   r   r  )r  r   r   r   rO   r   r   r   r   d  s
    zpoisson_impl2.<locals>._implr   )r  r   r   r   r   r   poisson_impl2[  s    

r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s2   | dkrt dtdttj   d|  S )Nr   zpower(): a <= 0r7   r   )r   r   powr@  r   r   ra  rX   r   r   r   r   p  s
    power_impl.<locals>._implr   rX   r   r   r   r   
power_implm  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   powerrX   r   r   r   r   r   |  r   zpower_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rX   r   r   r   rO   r   r   r   r     s
    
r  r   rX   r   r   r   r   r   r  y  s    c                   C   s   dd S )Nc                   S   s   t jdS r   r   r   rayleighr   r   r   r   r     r   z rayleigh_impl0.<locals>.<lambda>r   r   r   r   r   rayleigh_impl0  s    r  c                 C   s   t | tjtjfrtS d S r   )rq   r   r   rr   rayleigh_implr3  r   r   r   rayleigh_impl1  s    r  c              	   C   s2   | dkrt d| tdtdtj    S )Nr   zrayleigh(): mode <= 0r   r   )r   r   r   r   r   r   r  r   r   r   r    s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r  )r3  r   r   r   r   r     r   z rayleigh_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  )r3  r   r   r   rO   r   r   r   r     s
    
zrayleigh_impl2.<locals>._implr   )r3  r   r   r   r   r   rayleigh_impl2  s    r  c                  C   s   dd } | S )Nc                   S   s   t j t j  S r   r   r   r   r   r   r     s    zcauchy_impl.<locals>._implr   r   r   r   r   cauchy_impl  s    r  c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   )r   r   standard_cauchyr   r   r   r   r     r   z&standard_cauchy_impl.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
z#standard_cauchy_impl.<locals>._implr   r   r   r   r   standard_cauchy_impl  s    r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s:   t j }t j| d }t| d | t| }|S r  )r   r   r   rP  r   r   )r  NGr  r   r   r   r     s    
zstandard_t_impl.<locals>._implr   r  r   r   r   standard_t_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   
standard_tr  r   r   r   r     r   z"standard_t_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  )r  r   r   r   rO   r   r   r   r     s
    
zstandard_t_impl2.<locals>._implr   )r  r   r   r   r   r   standard_t_impl2  s    r  c                 C   s(   t | tjr$t |tjr$dd }|S d S )Nc                 S   s   | dkrt d|dkr t d| d|  }tj }| | | }| ||td| | ||     }tj }|| | |  kr|S | |  | S d S )Nr   zwald(): mean <= 0zwald(): scale <= 0r      )r   r   r   r   r   r   )meanr   Zmu_2lr  r  r  r   r   r   r     s    
&
zwald_impl.<locals>._implr[  )r  r   r   r   r   r   	wald_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   wald)r  r   r   r   r   r   r     r   zwald_impl2.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )r  r   r   r   r   rO   r   r   r   r     s
    
zwald_impl2.<locals>._implr   )r  r   r   r   r   r   r   
wald_impl2  s    r  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   | dkrt d| d }d| }dtj  }tj }tt|d|  }dd|  | }|dkr || |d  |d  || kr |S q d S )Nr   zzipf(): a <= 1r   g      r7   )r   r   r   r  r   r  )rX   Zam1rY   r  r  r  Tr   r   r   r     s    
(zipf_impl.<locals>._implr[  r  r   r   r   	zipf_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   zipfr  r   r   r   r     r   zzipf_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   r  r   r   r   r   r  r  r   r   r   r     s
    r  r   r  r   r   r   r    s    c                    s\   t | tjstd|dkr&tjj n|dkr4tj | jdkrL fdd}n fdd}|S )Nz1The argument to shuffle() should be a buffer typer   r   r7   c                    sJ   | j d d }|dkrF |d }| | | |  | |< | |< |d8 }qd S r6   )shapearrijrandr   r   r,  0  s
    zdo_shuffle_impl.<locals>.implc                    sV   | j d d }|dkrR |d }t| | t| |  | |< | |< |d8 }qd S r6   )r  r   copyr  r  r   r   r,  7  s
    &)	rq   r   Bufferr   r   r   r  r   ndim)r  rngr,  r   r  r   do_shuffle_impl%  s    

r  c                 C   s
   t | dS ro   r  r  r   r   r   shuffle_implA  s    r  c                 C   s
   t | dS rw   r  r  r   r   r   r  F  s    c                 C   s4   t | tjrdd }nt | tjr,dd }nd }|S )Nc                 S   s   t | }t j| |S r   )r   aranger   shuffle)r   rP   r   r   r   permutation_implN  s    
z*permutation_impl.<locals>.permutation_implc                 S   s   |   }tj| |S r   )r   r   r   r	  )r   Zarr_copyr   r   r   r
  S  s    )rq   r   rr   Array)r   r
  r   r   r   r
  K  s    

r
  c                  G   s"   t | dkrdd }ndd }|S )Nr   c                  W   s
   t j S r   r   r   r   r   r   	rand_implc  s    zrand.<locals>.rand_implc                  W   s   t j| S r   r   r   r   r   r   r  h  s    len)r   r  r   r   r   r  _  s    
r  c                  G   s"   t | dkrdd }ndd }|S )Nr   c                  W   s
   t j S r   r   r   r   r   r   
randn_implr  s    zrandn.<locals>.randn_implc                  W   s   t j| S r   r   r   r   r   r   r  w  s    r  )r   r  r   r   r   randnn  s    
r  Tc                    s   t | tjrF| jdkst| j tdd tdd }tdd nFt | tjr~tj	 tdd td	d }td
d nt
d| f |d tjfkrdfdd	}nd fdd	}|S )Nr7   c                 S   s   t | S r   r  r  r   r   r   get_source_size  s    zchoice.<locals>.get_source_sizec                 S   s   |   S r   )r   r  r   r   r   copy_source  s    zchoice.<locals>.copy_sourcec                 S   s   | | S r   r   rX   Za_ir   r   r   getitem  s    zchoice.<locals>.getitemc                 S   s   | S r   r   r  r   r   r   r    s    c                 S   s
   t | S r   )r   r  r  r   r   r   r    s    c                 S   s   |S r   r   r  r   r   r   r    s    z@np.random.choice() first argument should be int or array, got %sTc                    s     | }t jd|}| |S )zs
            choice() implementation returning a single sample
            (note *replace* is ignored)
            r   r  )rX   r   replacer   r  )r  r  r   r   choice_impl  s    zchoice.<locals>.choice_implc           	         s   | }|rPt | }|j}tt|D ] }t jd|}| |||< q*|S t | }|j|krntdt j	| }|j}tt|D ]}|| ||< q|S dS )zO
            choice() implementation returning an array of samples
            r   z@Cannot take a larger sample than population when 'replace=False'N)
r   r   r   r   r  r   r  r   r   permutation)	rX   r   r  r   r   flr  r  Z
permuted_ar   r  r  r   r   r    s     
)NT)NT)rq   r   r  r  r   r   r   rr   r   r  r   rx   )rX   r   r  r  r  r   r  r   choice  s0    




r  c                    s   t j tdd t| tjs,td| f t|tjtjfsLtd|f |d tj	fkrld
 fdd	}nJt|tjrd fdd	}n,t|tj
rd fdd	}ntd	|f |S )Nc                 S   s   |j }|j}t|}td||D ]z}d}| }td|d D ]F}	||	 }
tj||
|  }|||	 < ||8 }|dkrx q||
8 }q:|dkr |||| d < q d S )Nr   r   r7   )r   r   r  r   r   r   r  )r   pvalsr   r  szplenr  Zp_sumZn_experimentsr  Zp_jZn_jr   r   r   multinomial_inner  s    
z&multinomial.<locals>.multinomial_innerz7np.random.multinomial(): n should be an integer, got %szEnp.random.multinomial(): pvals should be an array or sequence, got %sc                    s    t t| }| || |S )z5
            multinomial(..., size=None)
            r   Zzerosr  r   r  r   r   r   r  r   r   multinomial_impl  s    z%multinomial.<locals>.multinomial_implc                    s$   t |t|f }| || |S )z4
            multinomial(..., size=int)
            r  r   r!  r   r   r"    s    c                    s&   t |t|f  }| || |S )z6
            multinomial(..., size=tuple)
            r  r   r!  r   r   r"    s    zDnp.random.multinomial(): size should be int or tuple or None, got %s)N)N)N)r   r  r   rq   r   rr   r   Sequencer  rx   Z	BaseTuple)r   r  r   r"  r   r!  r   multinomial  s*    
	r$  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   t t| }t| | |S r   r   r   r  dirichlet_arr)r:  r   r   r   r   dirichlet_impl+  s    
!dirichlet.<locals>.dirichlet_impl)rq   r   r#  r  )r:  r'  r   r   r   	dirichlet(  s    r)  c                 C   s   t | tjtjfs td| f |d tjfkr:ddd}nJt |tjrRddd}n2t |tjrxt |jtjrxd	dd}ntd| |S )
NzCnp.random.dirichlet(): alpha should be an array or sequence, got %sc                 S   s   t t| }t| | |S r   r%  r:  r   r   r   r   r   r'  <  s    
r(  c                 S   s    t |t| f}t| | |S )z2
            dirichlet(..., size=int)
            r%  r*  r   r   r   r'  C  s    
c                 S   s"   t |t| f }t| | |S )z4
            dirichlet(..., size=tuple)
            r%  r*  r   r   r   r'  M  s    
zJnp.random.dirichlet(): size should be int or tuple of ints or None, got %s)N)N)N)	rq   r   r#  r  r   rx   rr   r   r   )r:  r   r'  r   r   r   r)  2  s(    	c           
      C   s   t | D ]}|dkrtdqt| }|j}|j}td||D ]j}d}t| D ]2\}}	tj	|	d||| < ||||  
 7 }qNt| D ]\}}	|||   |  < qq>d S )Nr   zdirichlet: alpha must be > 0.0r7   )iterr   r  r   r   r   	enumerater   r   r>  item)
r:  r   Za_valZa_lenr   r   r  Znormr   r   r   r   r   r&  ^  s    
r&  c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s   t | | t| |S r   #validate_noncentral_chisquare_inputnoncentral_chisquare_singler  noncr   r   r   noncentral_chisquare_impl|  s    
7noncentral_chisquare.<locals>.noncentral_chisquare_implr   )r  r2  r3  r   r   r   noncentral_chisquarex  s     
r5  c                 C   s`   |d t jfkrddd}|S t|t jsBt|t jrPt|jt jrPddd}|S td| d S )Nc                 S   s   t | | t| |S r   r.  )r  r2  r   r   r   r   r3    s    
r4  c                 S   s<   t | | t|}|j}t|jD ]}t| |||< q$|S r   )r/  r   r   r   r   r   r0  )r  r2  r   r   r   rO   r   r   r   r3    s    

zUnp.random.noncentral_chisquare(): size should be int or tuple of ints or None, got %s)N)N)r   rx   rq   rr   r   r   r   )r  r2  r   r3  r   r   r   r5    s    

c                 C   sp   t |rt jS d| k rHt j| d }t j t | }|||  S t j|d }t j| d|  S d S )Nr7   r   r9   )r   isnannanr   r  r   r   r  )r  r2  Zchi2r   r  r   r   r   r0    s    
r0  c                 C   s$   | dkrt d|dk r t dd S )Nr   zdf <= 0znonc < 0r  r1  r   r   r   r/    s    r/  )NT)N)N)N)__doc__r   r   numpyr   Zllvmliter   Znumba.core.cgutilsr   Znumba.core.extendingr   r   r   Znumba.core.imputilsr   r   r	   Znumba.core.typingr   Z
numba.corer   r   Znumba.npr   Znumba.core.errorsr   registrylowerr  r   rh   r   r   rU   r  r   rH   ZLiteralStructType	ArrayTypeZrnd_state_tZPointerTyper   r*   r-   r.   r/   r5   r8   r:   r<   r@   rQ   rZ   rn   ru   rv   rs   r   Zrandom_samplesampleZranfr   r   rl  normalvariater   r   r   r   r   r   r   r   r   r   r   getrandbitsr   r   r   r   r  r  r  r  r  r  r  r  r  r  r   r"  r#  r'  r(  r%  r-  r6  r2  r5  r7  rV  r<  rP  r>  r8  rN  rT  betavariaterW  r;  rU  rY  expovariater\  r`  r_  ra  rb  rd  re  rg  rj  rk  lognormvariaterm  rh  paretovariaterq  rt  rs  weibullvariateru  rx  rw  ry  vonmisesvariater}  r  rz  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  Znegative_binomialr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r	  r  r  r
  r  r  r  r$  r)  r&  r5  r0  r/  r   r   r   r   <module>   s:  



1























(
F































;









































,



7

















































A




































V
P
	
+


