U
    md?                     @   sL  d dl mZ d dlmZmZmZmZ ddgZddddd	d
gZddddddgZ	edddddgZ
ddddddgZddddd d!gZd"d#d$d%d&d'gZd(d)d*d+d,d-gZd.d/d0d1d2d3gZd4d5d6d7d8d9gZd:d;d<d=d>d?gZd@dAdBdCdBdDgZdEd&dFdGdHdIgZe
eeedJZe	eeedJZeeeedJZed'd'dKgZdLdMdNgdOdPdQgdRdSdTgdUdVdWgdXdYdZgd[d\d]ggZeee Zd^d_d`gdadbdcgdddedfgdgdhdigdjdkdlgdmdndoggZeee Zdpdqdrgdsdtdugdvdwdxgdydkdzgd{d|d}gd~ddggZeee ZdddgdddgdddgdddgdddgdddggZeee ZeeeedJZed'dddKgZddddgddddgddddgddddgddddgddddggZeee ZddddgddddgddddgddddgddddgddddggZeee ZddddgddddgddddgddddgddddgddddggZ ee e Z ddddgddddgddddgddddgddddgddddggZ!ee!e Z!eee e!dJZ"ddddddgZ#ddddddgZ$d dddddgZ%ddddddgZ&ed	d
d dgddd dgddddgddddgddddgddd dggZ'eddd d!gd"d#d$d gd%d&d'd(gd)d*d d+gd,d-d d.gd/d0d1d2ggZ(ed3d4d5d6gd7d8d9d:gd;d<d d=gd>d?d@d gdAdBdCd gdDdEdFdGggZ)edHdId dJgdKdLd dMgdNdOdPd gdQdRd dSgdTdUd dVgdWdXdYdZggZ*ed'ddKd[d\gZ+ed]d^d_d`d gdadbdcdddegdfdgdhdidjgdkdldmdndogdpdqdrdsdtgdudvdwdxdyggZ,e,e+9 Z,edzd{d|d}d gd~ddddgdddddgdddddgdddddgdddddggZ-e-e+9 Z-edddddgdddddgdddddgdddddgdddddgdddddggZ.e.e+9 Z.edddddgdddddgdddddgdĐdŐdƐdǐdgdɐdʐdːd̐dgdΐdϐdАdѐdggZ/e/e+9 Z/dddZ0d֐dאdd gdِdڐdېdgdݐdސdߐdgggZ1ee1Z1ddddgddddgdddd ggdddd gdddd gdddd ggddddgddddgdddd ggd ddd gdddd gdddd ggd	d
dd gdddd gdddd ggddddgddddgddddggddd d!gd"d#d$d%gd&d'ddggd(d)d*d+gd,d-d.d/gd0d1d2d3ggd4d5d6d7gd8d9d:d;gd<d=d>d?ggd@dAdBdCgdDdEdFdGgdHdIdJdKggdLdMdNdOgdPdQdRdSgdTdUdVdWggdXdYdZd[gd\d]d^d_gd`dadbdcgggZ2ee2Z2dddedfdggdhdidjdkgdldmdndoggdpdqdrd gdsdtdud gdvdwdxdyggdzd{d|d}gd~dddgddddggddddgddddgddddggddddgddddgddddggddddgddddgddddggddddgddddgddddggddddgddddgddddggddÐdĐdgdƐdǐdȐdgdʐdːd̐dggdΐdϐdАdgdҐdӐdԐdgd֐dאdؐdggdڐdېdܐdgdސdߐddgddddggddddgddddgddddgggZ3ee3Z3ddddgddddgddddggddd dgddddgdddd	ggd
dddgddddgddddggddddgddddgddd d!ggd"d#d$d%gd&d'd(d)gd*d+d,d-ggd.d/d0d1gd2d3d4d5gd6d7d8d9ggd:d;d<d=gd>d?d@dAgdBdCdDdEggdFdGdHdIgdJdKdLdMgdNdOdPdQggdRdSdTdUgdVdWdXdYgdZd[d\d]ggd^d_d`dagdbdcdddegdfdgdhdiggdjdkdldmgdndodpdqgdrdsdtduggdvdwdxdygdzd{d|d}gd~dddgggZ4ee4Z4e1e2e3e4dJZ5d'defddZ6dS (      )norm)arraypolyvalinfasarray
mackinnonpmackinnoncritgp=
ףg{Gzgq=
ףpgQg(\g)\(g
ףp=
3gQ3g(\55g     @7gzG5g=
ףp9g)\(?gQ?g)\(?g?gףp=
?g(\g(\g
ףp=
	g(\g=
ףp=gq=
ףpgGz2g\(2g{Gz7gR<g(\9gQE7gQ@gq=
ףp?g?gQ?gHzG?   gQgQ	g      g333333gffffffgq=
ףpgGz.0gfffff&5gQ^9gzG:gHz:gGz.:gffffff?g)\(?gQ?g(\?g
ףp=
?gQ?gGz	gGzg{Gzgp=
ףg{GzgQgQ+1g5gGzT8gHz8gQ8<gHzG?gHzG?gzG?gQ@gQ?)ncctcttg{Gz?g:M?g o_?gH.	@g^K=?g@a+?gsA@g_vO@gJ4?gEJY@gd]Fx@g#~j?gQ	@gJ{/Lf@g_Q?gQ@gV/'@g鷯?gc=y@gO@aS@gW/'?gH}@g\(\@gMJ?gJY8@gcZ@gi o?gZd;O	@g]K@gT?gZd;O@g2w-!4@gCiq?gA`Т@gsA@g=yX?guV@g
F%u
@g[B>٬?gͪ@gp_Q@g=U?g(@gTd@gfc]F?gz,C@g-!lV@g(~k	@gI@g鷯?gk+ݓ@gQ@g_v?gHP@gUN @gI+?g{P@g'i@g`TR'?gq[@gV@g&S:?g	g	@gB`"@gw#?gcZ
@g&@g*	?g$
@gGr@g?ܵ|?g@g?gl	g?g_vO"@gOeggs
@g?W[?gV-!@gDl gͪ
gܵ|@gx#<@gZӼ	gyg	@g:@gg
h"lxg1%
@g	h"l8@g	h"lgё\Cgܵ|@g^I@gz,Cgeag(?g[ A"@g1ZdgǘguV@gT㥛@g6[gl	gg-C@gJ4@gw#9g+ݓgsAO@gH.@gt
g?ܵg 	
@gͪ@gjMSg?
g,eX@g46<@gDioIgS㥛ggs5@g^@gec]gw/g@gJ+@g#J{/Lg!rhgS㥛	@gQ@gS%
g|гgK7@gH}8@g?ܵg|a2U0	gH@gy):@gڬ\mg|?5^g/@gg@g]Fx gD g=U@g o@gz6>g<Nё\g48@g|?5@gh o
g`vOgq@gFx$@go_g<,	g0*@g_)z@gy):gJY8g]C@g/L
 @gx&gQkwgC @gZd; @g(0ghsg333333gffffff!g-gfffff4g333339g     >g!g,g     3g9g=g333333Ag      .g3gL9g?g333333Cg333334gfffff=g     @CgFg?gH}8gg3fӣg9#J{?g~jtgڧ1gmV}@gO@aSgd,i?gŏ1w-gY8m@gg$0{?gkCgQ@gZӼg3K?gCngZB>@gh|?5gӂ}glV}@gMOg?gd@zǳgT?gH}8?g U+~׿g3@gۊedgm4?gIf6ÿga+e
@gW/'g~gMSt$@gyg)sg=,Ԛ+@g"u gN^?gKu̿gSt$@g0L
F%g?ggV/@gjMgx&1?g"uqĿg`vO@gJYgc=yXgTt$?g?gۿҤg?5^I @gLJ?gl	ggN@S&@g cZBg o?g6qrÿg1%d@g
h"lxzg/Xni5gjM@gZڊgsMg镲 @gQI?g@M-[gV@gȘggg46<@g^K=g-lg	c7@gy&1L-g;Sn@gƧ ϠտgMbP?gh㈵>gOe?g9v@g,eXw*@g 2(@g}8gD?g<Nё\@g?@gZB>Y@gSt$@g8d@gOn@g?W[@gx#?gc]K?g,eX@gPn@g@?gX5;N?gJY8?g 	
@g	^)
@gPkw?g??g]C?gE@gH.!}@g,Ԛ?glV}?g;pΈ?gFx?g+e@gQkwb@gꕲq?gLJ@gl	g@g~jt@gy):?g\C?gl@g5^I@gr?g:M?g/$?gm	@gH}
@g?ܵ?g[<?gH?gW2D@g:H@gB>٬?g&S?gioT?gA&@grh@gW[?g&W?g-!lV?goŏ@gYJ@gAc]K@g6[?g      ?g^)@ga+eY@gtF_?g_L?gk	?g[B>٬@gȘ@gгY?gH}8g?gGz?g r@g!uq
@gC6?g?߾?gH}?gȘ@g7@g3?g{Gz?gE?gx$(~@gsF@g9EGr?gpΈ?gɳ?g[잼@g[ Ac@gi o?gH}8?g1%?g47B@g(~k@g_vO?g-1?gNbX9?gh|?5@gL
F%@gͪ?gԚ?gc]F?gS@gL	@gJ4?gQ?glV}?gK7A`@gH@g9v?gyX5;?ggs?g?d@g=yX(@gn?g@a+?gݓ?r   Nc                 C   s   t | }t| }t| }| ||d  kr,dS | ||d  k r@dS | ||d  krbt| |d  }nt| |d  }tt|ddd | S )a  
    Returns MacKinnon's approximate p-value for teststat.

    Parameters
    ----------
    teststat : float
        "T-value" from an Augmented Dickey-Fuller regression.
    regression : str {"c", "n", "ct", "ctt"}
        This is the method of regression that was used.  Following MacKinnon's
        notation, this can be "c" for constant, "n" for no constant, "ct" for
        constant and trend, and "ctt" for constant, trend, and trend-squared.
    N : int
        The number of series believed to be I(1).  For (Augmented) Dickey-
        Fuller N = 1.

    Returns
    -------
    p-value : float
        The p-value for the ADF statistic estimated using MacKinnon 1994.

    References
    ----------
    .. [*] MacKinnon, J.G. 1994  "Approximate Asymptotic Distribution Functions
        for Unit-Root and Cointegration Tests." Journal of Business & Economics
        Statistics, 12.2, 167-76.

    Notes
    -----
    For (A)DF
    H_0: AR coefficient = 1
    H_a: AR coefficient < 1
    r	         ?g        N)	_tau_maxs	_tau_mins
_tau_stars_tau_smallps_tau_largepsr   Zcdfr   )Zteststat
regressionNZlagsZmaxstatZminstatZstarstatZtau_coef r   R/home/sam/Atlas/atlas_env/lib/python3.8/site-packages/statsmodels/tsa/adfvalues.pyr      s    !gOpg,CgjtguVg(0ѿgQ
g+9?@gL~gSt$?gʡEgw/]9@g6>W[qgcZB>(gK70gʡESgaog=UgV-gQDgԲgQIgFxg$+go_%g~jt@gƢd
g(pgnJg%u[gI.!g(\g-,gW[,g)\@gClG@gk&g6[ !gNbX9%gZd;@g>?g!uqgX9vgmsczg7d2g#~jBgMbg*Dx&gY&g9#J{g~8gD g?5^Igϛgl	g5gV-FgE>'g~j,gfffff&)g<Ig6{%gʡEg gz69guVLg7A`(V@g>:ugD0gˡE}1g7A` N@gPI5g     `*g"~jgn;@g	K<g~jt=gxYQg=
ףpd@gղHg3gQ6gbX9[@gE2gJ+v/gxNgOjM@gjtTgvp@g{gǘ 7gL7A`8gSb@gk&g|гYe2gK7A`g+ηW@gZ![g2w-!Bg(\Ug'1
o@g<8b-gT4:gn:gNbX9f@gSZgN@#5g+"gJ+e@gQ5Ugz):DgQYgzGUx@ggZӼs=gX9v>gn`o@g0|DLg`TR' 8guVg!rhad@g3.gN@GgƳZgy&1v@gNg	gj@gfffffF>g+?o@gk) gGx$:gETglb@g>yX5gA`IgDl	_g"@glC8sg_Q"Bgq=
ף@@gFԬs@gKqUYg?ܵ=grh|gʡEg@g]gV/"g!rhm<g)\`g)*Hg oŏgOn"gZd;߯FgW2	gMOgffffffgzGa6g{OgQI.gxAg{>gڬ\m#gS%(gl`qg~jtSgx&g1Z5@gsFg0*2g/$HgV-Z@gDyg:p'g-3gh|?US@g&Ngi o%"g5^I!g$A@g8dg0*x6g&1LJgx&1I@geg[B>,-g|?5^:2gA`C@gٱוg     &g"#gˡEK@gvg@7:gT㥛Mg RI@gx(
gAc][1g)\6g"V@g*gŏ17+g`"y$gDl1S@g:g`"=g|?5RgjtHi@g=gGzN4gMbX99g)\`@gs/gU0* 0gy&1#g rhW@g[='gZd;O@gUgS㥛n@g.9g|a2U7gGz<gmf@g{g462gtV$g$^@gUD g6;NBgZdXgQt@gjg9#z:gbX9?gzGk@gaogtn5gʡEs%g(\c@gܺ:g$(~DgMbx[g+!}@ge6$#geX=g1Z@gy&1q@gegyI8g^I+!gn<e@gR\UgǘGgjt4^g$@gC9Ѯgz6@gvBg/$u@gV/gׁsF4;g^I+gZd;O5f@glIFg?6IgCl`gh|?@gMtg^I;Bgsh|Bg/u@gvZgPn3>gxgA`Jj@gV`Vg	[Kgyag^I@gX>gQCg BgA``y@gL7A`%gz@gClg#~js@gB	|g(-'gFAgntg#gog{G(gV-]gz1mgfc]Fgy&1,gd;OOghbg
h"lx:4gA`:Pgjt8V@gWgo*gxf<gCl/R@g鲘gvOj$g rh1gy&1P@gG|gJY7gB`";Sg/$g@gU]gΈ/g r(@gQ^@g{gz6>W(gx1g
ףp=T@gy):gF%uH;g/$SgZd;;a@g!Yg$(~{2g     ?g?5^I[@g6Xgǘp-gMb1g{GzY@g#0g3>g(\WgPno@g{g#~j<5gHzBg-Fh@gxgE1gK72g/$a@g*g\g}?5^YAg{Zg`"۟x@gJigV/78g$Cg7A`m@gLg^K=3gS2g rhe@gTt<gQI^CgQ&[gSv@gPgrhL;g9vCgL7A`n@g%̴g\mB6g)\1g+j@gD
gz):[Eg+]gQVz@g	K<g9vo>gfffff&FgHzu@g6>W[gj+8g㥛 3gZd'q@gR8g~k	aGg'1agףp=
[@g:gN@@g+WEgMbu@g6Tg/$;g(\+g33333m@gW2đg48}IgX9.bgҁ@g2YxgI+Bgy&1\HgGz}@g<Nё\^gV>gK7A-gjts@g?Yg[잤KgFcgV-Ĉ@g6~AglV}FDg bGg)\r~@gc&(g(\@gX9v>"gvq@gTގpg0L
FMgdgy&1@g28J^g3
Fg"Gg'1@g^}tgݵ|{Bg#~j%gv&z@c                 C   sn   |}|dkrt d| t| }|tkr>|| d dddf S || d dddddf }t|jd| S dS )a0  
    Returns the critical values for cointegrating and the ADF test.

    In 2010 MacKinnon updated the values of his 1994 paper with critical values
    for the augmented Dickey-Fuller tests.  These new values are to be
    preferred and are used here.

    Parameters
    ----------
    N : int
        The number of series of I(1) series for which the null of
        non-cointegration is being tested.  For N > 12, the critical values
        are linearly interpolated (not yet implemented).  For the ADF test,
        N = 1.
    reg : str {'c', 'tc', 'ctt', 'n'}
        Following MacKinnon (1996), these stand for the type of regression run.
        'c' for constant and no trend, 'tc' for constant with a linear trend,
        'ctt' for constant with a linear and quadratic trend, and 'n' for
        no constant.  The values for the no constant case are taken from the
        1996 paper, as they were not updated for 2010 due to the unrealistic
        assumptions that would underlie such a case.
    nobs : int or np.inf
        This is the sample size.  If the sample size is numpy.inf, then the
        asymptotic critical values are returned.

    References
    ----------
    .. [*] MacKinnon, J.G. 1994  "Approximate Asymptotic Distribution Functions
        for Unit-Root and Cointegration Tests." Journal of Business & Economics
        Statistics, 12.2, 167-76.
    .. [*] MacKinnon, J.G. 2010.  "Critical Values for Cointegration Tests."
        Queen's University, Dept of Economics Working Papers 1227.
        http://ideas.repec.org/p/qed/wpaper/1227.html
    )r   r   r
   r   z$regression keyword %s not understoodr	   Nr   r   r   )
ValueError	tau_2010sr   r   T)r   r   Znobsregtauvalr   r   r   r     s    #)r   r	   N)7Zscipy.statsr   numpyr   r   r   r   __all__Ztau_star_ncZ
tau_min_ncZ
tau_max_ncZ
tau_star_cZ	tau_min_cZ	tau_max_cZtau_star_ctZ
tau_min_ctZ
tau_max_ctZtau_star_cttZtau_min_cttZtau_max_cttr   r   r   Zsmall_scalingZtau_nc_smallpZtau_c_smallpZtau_ct_smallpZtau_ctt_smallpr   Zlarge_scalingZtau_nc_largepZtau_c_largepZtau_ct_largepZtau_ctt_largepr   Z	z_star_ncZz_star_cZ	z_star_ctZ
z_star_cttZz_nc_smallpZ
z_c_smallpZz_ct_smallpZz_ctt_smallpZz_large_scalingZz_nc_largepZ
z_c_largepZz_ct_largepZz_ctt_largepr   Ztau_nc_2010Z
tau_c_2010Ztau_ct_2010Ztau_ctt_2010r   r   r   r   r   r   <module>   s  























6%%%