U
    |e)                     @   s|   d Z ddlZddlZddlZddlZddlmZm	Z	m
Z
mZ ddlmZ ddlmZ g Zdd ZG d	d
 d
ZdddZdS )zTrust-region optimization.    N   )_check_unknown_options_status_messageOptimizeResult_prepare_scalar_function)HessianUpdateStrategy)
FD_METHODSc                    s.   dgd krd fS  fdd}|fS )Nr   c                    s(   d  d7  < t | f|   S )Nr   r   )npcopy)xwrapper_argsargsfunctionncalls X/var/www/website-v5/atlas_env/lib/python3.8/site-packages/scipy/optimize/_trustregion.pyfunction_wrapper   s    z(_wrap_function.<locals>.function_wrapperr   )r   r   r   r   r   r   _wrap_function   s
    r   c                   @   sj   e Zd ZdZdddZdd Zedd Zed	d
 Zedd Z	dd Z
edd Zdd Zdd ZdS )BaseQuadraticSubproblemaQ  
    Base/abstract class defining the quadratic model for trust-region
    minimization. Child classes must implement the ``solve`` method.

    Values of the objective function, Jacobian and Hessian (if provided) at
    the current iterate ``x`` are evaluated on demand and then stored as
    attributes ``fun``, ``jac``, ``hess``.
    Nc                 C   sF   || _ d | _d | _d | _d | _d | _d | _|| _|| _|| _	|| _
d S N)_x_f_g_h_g_mag_cauchy_point_newton_point_fun_jac_hess_hessp)selfr   funjachesshesspr   r   r   __init__'   s    z BaseQuadraticSubproblem.__init__c                 C   s*   | j t| j| dt|| |  S )Ng      ?)r#   r	   dotr$   r&   r"   pr   r   r   __call__4   s    z BaseQuadraticSubproblem.__call__c                 C   s   | j dkr| | j| _ | j S )z1Value of objective function at current iteration.N)r   r   r   r"   r   r   r   r#   7   s    
zBaseQuadraticSubproblem.func                 C   s   | j dkr| | j| _ | j S )z=Value of Jacobian of objective function at current iteration.N)r   r   r   r,   r   r   r   r$   >   s    
zBaseQuadraticSubproblem.jacc                 C   s   | j dkr| | j| _ | j S )z<Value of Hessian of objective function at current iteration.N)r   r    r   r,   r   r   r   r%   E   s    
zBaseQuadraticSubproblem.hessc                 C   s*   | j d k	r|  | j|S t| j|S d S r   )r!   r   r	   r(   r%   r)   r   r   r   r&   L   s    
zBaseQuadraticSubproblem.hesspc                 C   s    | j dkrtj| j| _ | j S )zAMagnitude of jacobian of objective function at current iteration.N)r   scipylinalgnormr$   r,   r   r   r   jac_magR   s    
zBaseQuadraticSubproblem.jac_magc                 C   s   t ||}dt || }t |||d  }t|| d| |  }|t|| }| d|  }	d| | }
t|	|
gS )z
        Solve the scalar quadratic equation ||z + t d|| == trust_radius.
        This is like a line-sphere intersection.
        Return the two values of t, sorted from low to high.
              )r	   r(   mathsqrtcopysignsorted)r"   zdtrust_radiusabcZsqrt_discriminantauxtatbr   r   r   get_boundaries_intersectionsY   s    	z4BaseQuadraticSubproblem.get_boundaries_intersectionsc                 C   s   t dd S )Nz9The solve method should be implemented by the child class)NotImplementedError)r"   r:   r   r   r   solvep   s    zBaseQuadraticSubproblem.solve)NN)__name__
__module____qualname____doc__r'   r+   propertyr#   r$   r%   r&   r0   rA   rC   r   r   r   r   r      s   	




r   r         ?     @@333333?-C6?FTc           "         st  t | |dkrtd|dkr0|dkr0td|dkr@tdd|	  krTdk s^n td|dkrntd|dkr~td	||krtd
t| }t| ||||d  j}  j}t	|rʈ j
}n6t	|rn,|tkst|trd} fdd}ntdt||\}}|dkr$t|d }d}|}|}|r<|g}||| |||}d}|j|
krz||\}}W n$ tjjk
r   d}Y qY nX ||}|| }||| |||}|j|j }|j| }|dkrd}q|| }|dk r|d9 }n|dkr|rtd| |}||	kr(|}|}|r>|t| |dk	rV|t| |d7 }|j|
k rrd}q||krPd}qqPtd td ddf} |r|dkrt| |  nt| | td td|j  td|  td j  td j  td j|d    t||dk||j|j  j j j|d  || | d
}!|dk	rb|j
|!d< |rp||!d< |!S )a  
    Minimization of scalar function of one or more variables using a
    trust-region algorithm.

    Options for the trust-region algorithm are:
        initial_trust_radius : float
            Initial trust radius.
        max_trust_radius : float
            Never propose steps that are longer than this value.
        eta : float
            Trust region related acceptance stringency for proposed steps.
        gtol : float
            Gradient norm must be less than `gtol`
            before successful termination.
        maxiter : int
            Maximum number of iterations to perform.
        disp : bool
            If True, print convergence message.
        inexact : bool
            Accuracy to solve subproblems. If True requires less nonlinear
            iterations, but more vector products. Only effective for method
            trust-krylov.

    This function is called by the `minimize` function.
    It is not supposed to be called directly.
    Nz7Jacobian is currently required for trust-region methodsz_Either the Hessian or the Hessian-vector product is currently required for trust-region methodszBA subproblem solving strategy is required for trust-region methodsr   g      ?zinvalid acceptance stringencyz%the max trust radius must be positivez)the initial trust radius must be positivez?the initial trust radius must be less than the max trust radius)r$   r%   r   c                    s     | |S r   )r%   r(   )r   r*   r   sfr   r   r&      s    z%_minimize_trust_region.<locals>.hessp      r1   g      ?r   successmaxiterz:A bad approximation caused failure to predict improvement.z3A linalg error occurred, such as a non-psd Hessian.z#         Current function value: %fz         Iterations: %dz!         Function evaluations: %dz!         Gradient evaluations: %dz          Hessian evaluations: %d)
r   rQ   statusr#   r$   nfevnjevnhevnitmessager%   allvecs)!r   
ValueError	Exceptionr	   asarrayflattenr   r#   gradcallabler%   r   
isinstancer   r   lenr0   rC   r.   LinAlgErrorminappendr
   r   printwarningswarnRuntimeWarningrT   ngevrV   r   r$   )"r#   x0r   r$   r%   r&   
subproblemZinitial_trust_radiusZmax_trust_radiusetagtolrR   disp
return_allcallbackinexactunknown_optionsZnhesspwarnflagr:   r   rY   mkr*   hits_boundaryZpredicted_valueZ
x_proposedZ
m_proposedZactual_reductionZpredicted_reductionrhoZstatus_messagesresultr   rM   r   _minimize_trust_regionu   s    








    

ry   )r   NNNNrI   rJ   rK   rL   NFFNT)rG   r4   rf   numpyr	   scipy.linalgr-   	_optimizer   r   r   r   Z'scipy.optimize._hessian_update_strategyr   (scipy.optimize._differentiable_functionsr   __all__r   r   ry   r   r   r   r   <module>   s,   X                 