U
    w|e                     @   s  d Z ddlm  mZ ddlZedZdd Z	dd Z
dd	 Zd
d Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdqd!d"Zdrd#d$Zd%d& Zd'd( Zd)d* Zd+d, Zd-d. Zd/d0 Zd1d2 Zd3d4 Z d5d6 Z!d7d8 Z"d9d: Z#d;d< Z$d=d> Z%d?d@ Z&dAdB Z'dCdD Z(dEdF Z)dGdH Z*dIdJ Z+dKdL Z,dMdN Z-dOdP Z.dQdR Z/dsdSdTZ0dtdUdVZ1dWdX Z2dYdZ Z3d[d\ Z4d]d^ Z5d_d` Z6dadb Z7dcdd Z8dedf Z9dgdh Z:didj Z;dkdl Z<dmdn Z=dodp Z>dS )uz0
Direct wrappers for Fortran `id_dist` backend.
    Nznonzero return codec                 C   s.   t | } | jjr | jdd} n
t | } | S )z6
    Same as np.asfortranarray, but ensure a copy
    Forder)npasarrayflagsf_contiguouscopyasfortranarray)A r   `/var/www/website-v5/atlas_env/lib/python3.8/site-packages/scipy/linalg/_interpolative_backend.py_asfortranarray_copy(   s
    

r   c                 C   s
   t | S )a  
    Generate standard uniform pseudorandom numbers via a very efficient lagged
    Fibonacci method.

    :param n:
        Number of pseudorandom numbers to generate.
    :type n: int

    :return:
        Pseudorandom numbers.
    :rtype: :class:`numpy.ndarray`
    )_idid_srand)nr   r   r   r   8   s    r   c                 C   s   t | } t|  dS )z
    Initialize seed values for :func:`id_srand` (any appropriately random
    numbers will do).

    :param t:
        Array of 55 seed values.
    :type t: :class:`numpy.ndarray`
    N)r   r
   r   	id_srandi)tr   r   r   r   H   s    	
r   c                   C   s   t   dS )z5
    Reset seed values to their original values.
    N)r   	id_srandor   r   r   r   r   U   s    r   c                 C   s   t | ||S )a|  
    Transform real vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idd_sfrm`, this routine works best when the length of
    the transformed vector is the power-of-two integer output by
    :func:`idd_frmi`, or when the length is not specified but instead
    determined a posteriori from the output. The returned transformed vector is
    randomly permuted.

    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idd_frmi`; `n` is also the length of the output vector.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idd_frmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idd_frmr   wxr   r   r   r   `   s    r   c                 C   s   t | |||S )a  
    Transform real vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idd_frm`, this routine works best when the length of
    the transformed vector is known a priori.

    :param l:
        Length of transformed vector, satisfying `l <= n`.
    :type l: int
    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idd_sfrmi`.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idd_sfrmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idd_sfrmlr   r   r   r   r   r   r   }   s    r   c                 C   s
   t | S )aC  
    Initialize data for :func:`idd_frm`.

    :param m:
        Length of vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idd_frm`.
    :rtype: :class:`numpy.ndarray`
    )r   idd_frmimr   r   r   r      s    r   c                 C   s   t | |S )a  
    Initialize data for :func:`idd_sfrm`.

    :param l:
        Length of output transformed vector.
    :type l: int
    :param m:
        Length of the vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idd_sfrm`.
    :rtype: :class:`numpy.ndarray`
    )r   	idd_sfrmir   r   r   r   r   r      s    r   c                 C   sZ   t |}t| |\}}}|jd }|j d|||   j||| fdd}|||fS )a  
    Compute ID of a real matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
       Nr   r   )r   r   iddp_idshapeTravelreshapeepsr   kidxrnormsr   projr   r   r   r"      s
    
,r"   c                 C   sV   t | } t| |\}}| jd }| j d|||   j||| fdd}||fS )aQ  
    Compute ID of a real matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r!   Nr   r   )r   r   iddr_idr#   r$   r%   r&   r   r)   r*   r+   r   r,   r   r   r   r-      s
    
,r-   c                 C   s<   t | } |jdkr"t| ||S | ddt |f S dS )as  
    Reconstruct matrix from real ID.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Reconstructed matrix.
    :rtype: :class:`numpy.ndarray`
    r   N)r   r
   sizer   idd_reconidargsortBr*   r,   r   r   r   r0      s    

r0   c                 C   s   t | |S )a6  
    Reconstruct interpolation matrix from real ID.

    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Interpolation matrix.
    :rtype: :class:`numpy.ndarray`
    )r   idd_reconintr*   r,   r   r   r   r4     s    r4   c                 C   s   t | } t| ||S )aN  
    Reconstruct skeleton matrix from real ID.

    :param A:
        Original matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`

    :return:
        Skeleton matrix.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   idd_copycolsr   r)   r*   r   r   r   r6   %  s    
r6   c                 C   s2   t | } t| ||\}}}}|r(t|||fS )a  
    Convert real ID to SVD.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   
idd_id2svd_RETCODE_ERRORr3   r*   r,   UVSierr   r   r   r8   ?  s
    
r8      c                 C   s   t | ||||\}}|S )a  
    Estimate spectral norm of a real matrix by the randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate.
    :rtype: float
    )r   	idd_snorm)r   r   matvectmatvecitssnormvr   r   r   r@   b  s    r@   c              	   C   s   t | ||||||S )a0  
    Estimate spectral norm of the difference of two real matrices by the
    randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the transpose of the first matrix to a vector, with
        call signature `y = matvect(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matvect: function
    :param matvect2:
        Function to apply the transpose of the second matrix to a vector, with
        call signature `y = matvect2(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matvect2: function
    :param matvec:
        Function to apply the first matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param matvec2:
        Function to apply the second matrix to a vector, with call signature
        `y = matvec2(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec2: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate of matrix difference.
    :rtype: float
    )r   idd_diffsnorm)r   r   rA   Zmatvect2rB   matvec2rC   r   r   r   rF     s    'rF   c                 C   s0   t | } t| |\}}}}|r&t|||fS )a  
    Compute SVD of a real matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   iddr_svdr9   r   r)   r;   r<   r=   r>   r   r   r   rH     s
    
rH   c                 C   s   t |}|j\}}t| |\}}}}}}	|	r4t||d |||  d  j||fdd}
||d |||  d  j||fdd}||d || d  }|
||fS )a  
    Compute SVD of a real matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r!   r   r   )r   r
   r#   r   iddp_svdr9   r&   r(   r   r   r   r)   iUiViSr   r>   r;   r<   r=   r   r   r   rJ     s    

**rJ   c           	      C   s   t |}|j\}}t|\}}t j|d| d  | d dd}t| |||\}}}|d|||   j||| fdd}|||fS )a  
    Compute ID of a real matrix to a specified relative precision using random
    sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
       r!   r   r   N)r   r
   r#   r   emptyr   iddp_aidr&   	r(   r   r   r   n2r   r,   r)   r*   r   r   r   rQ     s    

"&rQ   c                 C   sZ   t |}|j\}}t|\}}t j|| |d |d   dd}t| |||\}}|S )ae  
    Estimate rank of a real matrix to a specified relative precision using
    random sampling.

    The output rank is typically about 8 higher than the actual rank.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank estimate.
    :rtype: int
    r!   r   r   )r   r
   r#   r   rP   r   idd_estrankr(   r   r   r   rS   r   rar)   r   r   r   rT     s    

"rT   c                 C   s  t |}|j\}}t|\}}t jtt||d d| d|  d  dt||d   d| d |d  dd}t| |||\}}}	}
}}|rt	||d |||  d  j
||fdd}||	d |	||  d  j
||fdd}||
d |
| d  }|||fS )a  
    Compute SVD of a real matrix to a specified relative precision using random
    sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r!            rO   r   r   )r   r
   r#   r   r   rP   maxmin	iddp_asvdr9   r&   r(   r   r   r   rS   Zwinitr   r)   rL   rM   rN   r>   r;   r<   r=   r   r   r   r\   -  s     

4**r\   c                 C   s~   t j|d d| t||d   dd}t| ||||\}}}}|dkrNt|d|||   j||| fdd}|||fS )a  
    Compute ID of a real matrix to a specified relative precision using random
    matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r!   rO   r   r   r   N)r   rP   r[   r   iddp_ridr9   r&   )r(   r   r   rA   r,   r)   r*   r>   r   r   r   r^   W  s    (&r^   c                 C   s"   t | |||\}}}|rt|S )aQ  
    Estimate rank of a real matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function

    :return:
        Rank estimate.
    :rtype: int
    )r   idd_findrankr9   )r(   r   r   rA   r)   rV   r>   r   r   r   r_   }  s    r_   c                 C   s   t | ||||\}}}}}	}
|
r&t|	|d |||  d  j||fdd}|	|d |||  d  j||fdd}|	|d || d  }|||fS )a  
    Compute SVD of a real matrix to a specified relative precision using random
    matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r!   r   r   )r   	iddp_rsvdr9   r&   )r(   r   r   rA   rB   r)   rL   rM   rN   r   r>   r;   r<   r=   r   r   r   r`     s    #**r`   c                 C   sr   t | } | j\}}t|||}t| ||\}}||krTt j||| fddd}n|j||| fdd}||fS )ag  
    Compute ID of a real matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    float64r   dtyper   r   )r   r
   r#   	iddr_aidir   iddr_aidrP   r&   r   r)   r   r   r   r*   r,   r   r   r   re     s    

re   c                 C   s   t | ||S )aO  
    Initialize array for :func:`iddr_aid`.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Initialization array to be used by :func:`iddr_aid`.
    :rtype: :class:`numpy.ndarray`
    )r   rd   r   r   r)   r   r   r   rd     s    rd   c           
      C   s   t | } | j\}}t jd| d | d| d |  d|d   d dd}t|||}||d	|j< t| ||\}}}}	|	d
krt|||fS )a  
    Compute SVD of a real matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    rO            rY   d   r   r   Nr   )	r   r
   r#   rP   rd   r/   r   	iddr_asvdr9   
r   r)   r   r   r   Zw_r;   r<   r=   r>   r   r   r   rl     s    

:rl   c                 C   sB   t | |||\}}|d|||   j||| fdd}||fS )a  
    Compute ID of a real matrix to a specified rank using random matrix-vector
    multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    Nr   r   )r   iddr_ridr&   )r   r   rA   r)   r*   r,   r   r   r   rn   )  s    &rn   c           	      C   s0   t | ||||\}}}}|dkr&t|||fS )a  
    Compute SVD of a real matrix to a specified rank using random matrix-vector
    multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r   )r   	iddr_rsvdr9   )	r   r   rA   rB   r)   r;   r<   r=   r>   r   r   r   ro   M  s    #ro   c                 C   s   t | ||S )a  
    Transform complex vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idz_sfrm`, this routine works best when the length of
    the transformed vector is the power-of-two integer output by
    :func:`idz_frmi`, or when the length is not specified but instead
    determined a posteriori from the output. The returned transformed vector is
    randomly permuted.

    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idz_frmi`; `n` is also the length of the output vector.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idz_frmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idz_frmr   r   r   r   rp   z  s    rp   c                 C   s   t | |||S )a  
    Transform complex vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idz_frm`, this routine works best when the length of
    the transformed vector is known a priori.

    :param l:
        Length of transformed vector, satisfying `l <= n`.
    :type l: int
    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idz_sfrmi`.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idd_sfrmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idz_sfrmr   r   r   r   rq     s    rq   c                 C   s
   t | S )aC  
    Initialize data for :func:`idz_frm`.

    :param m:
        Length of vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idz_frm`.
    :rtype: :class:`numpy.ndarray`
    )r   idz_frmir   r   r   r   rr     s    rr   c                 C   s   t | |S )a  
    Initialize data for :func:`idz_sfrm`.

    :param l:
        Length of output transformed vector.
    :type l: int
    :param m:
        Length of the vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idz_sfrm`.
    :rtype: :class:`numpy.ndarray`
    )r   	idz_sfrmir    r   r   r   rs     s    rs   c                 C   sZ   t |}t| |\}}}|jd }|j d|||   j||| fdd}|||fS )a  
    Compute ID of a complex matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r!   Nr   r   )r   r   idzp_idr#   r$   r%   r&   r'   r   r   r   rt     s
    
,rt   c                 C   sV   t | } t| |\}}| jd }| j d|||   j||| fdd}||fS )aT  
    Compute ID of a complex matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r!   Nr   r   )r   r   idzr_idr#   r$   r%   r&   r.   r   r   r   ru     s
    
,ru   c                 C   s<   t | } |jdkr"t| ||S | ddt |f S dS )av  
    Reconstruct matrix from complex ID.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Reconstructed matrix.
    :rtype: :class:`numpy.ndarray`
    r   N)r   r
   r/   r   idz_reconidr1   r2   r   r   r   rv     s    

rv   c                 C   s   t | |S )a9  
    Reconstruct interpolation matrix from complex ID.

    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Interpolation matrix.
    :rtype: :class:`numpy.ndarray`
    )r   idz_reconintr5   r   r   r   rw   -  s    rw   c                 C   s   t | } t| ||S )aQ  
    Reconstruct skeleton matrix from complex ID.

    :param A:
        Original matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`

    :return:
        Skeleton matrix.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   idz_copycolsr7   r   r   r   rx   ?  s    
rx   c                 C   s2   t | } t| ||\}}}}|r(t|||fS )a  
    Convert complex ID to SVD.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   
idz_id2svdr9   r:   r   r   r   ry   Y  s
    
ry   c                 C   s   t | ||||\}}|S )a  
    Estimate spectral norm of a complex matrix by the randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate.
    :rtype: float
    )r   	idz_snorm)r   r   matvecarB   rC   rD   rE   r   r   r   rz   |  s    rz   c              	   C   s   t | ||||||S )a/  
    Estimate spectral norm of the difference of two complex matrices by the
    randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the adjoint of the first matrix to a vector, with
        call signature `y = matveca(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matveca: function
    :param matveca2:
        Function to apply the adjoint of the second matrix to a vector, with
        call signature `y = matveca2(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matveca2: function
    :param matvec:
        Function to apply the first matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param matvec2:
        Function to apply the second matrix to a vector, with call signature
        `y = matvec2(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec2: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate of matrix difference.
    :rtype: float
    )r   idz_diffsnorm)r   r   r{   matveca2rB   rG   rC   r   r   r   r|     s    'r|   c                 C   s0   t | } t| |\}}}}|r&t|||fS )a  
    Compute SVD of a complex matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   idzr_svdr9   rI   r   r   r   r~     s
    
r~   c                 C   s   t |}|j\}}t| |\}}}}}}	|	r4t||d |||  d  j||fdd}
||d |||  d  j||fdd}||d || d  }|
||fS )a  
    Compute SVD of a complex matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r!   r   r   )r   r
   r#   r   idzp_svdr9   r&   rK   r   r   r   r     s    

**r   c           	      C   s   t |}|j\}}t|\}}t j|d| d  | d ddd}t| |||\}}}|d|||   j||| fdd}|||fS )a  
    Compute ID of a complex matrix to a specified relative precision using
    random sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    rO   r!   
complex128r   rb   Nr   )r   r
   r#   rr   rP   r   idzp_aidr&   rR   r   r   r   r   
  s    

$&r   c                 C   s\   t |}|j\}}t|\}}t j|| |d |d   ddd}t| |||\}}|S )ah  
    Estimate rank of a complex matrix to a specified relative precision using
    random sampling.

    The output rank is typically about 8 higher than the actual rank.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank estimate.
    :rtype: int
    r!   r   r   rb   )r   r
   r#   rr   rP   r   idz_estrankrU   r   r   r   r   )  s    

$r   c                 C   s  t |}|j\}}t|\}}t jtt||d d| d|  d  dt||d   d| d |d  t jdd}t	| |||\}}}	}
}}|rt
||d |||  d  j||fdd	}||	d |	||  d  j||fdd	}||
d |
| d  }|||fS )
a  
    Compute SVD of a complex matrix to a specified relative precision using
    random sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r!   rW   rX         rO   r   rb   r   )r   r
   r#   r   rr   rP   rZ   r[   r   	idzp_asvdr9   r&   r]   r   r   r   r   G  s"    

4 **r   c                 C   s~   t j|d d| t||d   t jdd}t| ||||\}}}}|rNt|d|||   j||| fdd}|||fS )a  
    Compute ID of a complex matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r!   rO   r   rb   Nr   )r   rP   r[   r   r   idzp_ridr9   r&   )r(   r   r   r{   r,   r)   r*   r>   r   r   r   r   q  s     &r   c                 C   s"   t | |||\}}}|rt|S )aR  
    Estimate rank of a complex matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function

    :return:
        Rank estimate.
    :rtype: int
    )r   idz_findrankr9   )r(   r   r   r{   r)   rV   r>   r   r   r   r     s    r   c                 C   s   t | ||||\}}}}}	}
|
r&t|	|d |||  d  j||fdd}|	|d |||  d  j||fdd}|	|d || d  }|||fS )a  
    Compute SVD of a complex matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r!   r   r   )r   	idzp_rsvdr9   r&   )r(   r   r   r{   rB   r)   rL   rM   rN   r   r>   r;   r<   r=   r   r   r   r     s    #**r   c                 C   sr   t | } | j\}}t|||}t| ||\}}||krTt j||| fddd}n|j||| fdd}||fS )aj  
    Compute ID of a complex matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r   r   rb   r   )r   r
   r#   	idzr_aidir   idzr_aidrP   r&   rf   r   r   r   r     s    

r   c                 C   s   t | ||S )aO  
    Initialize array for :func:`idzr_aid`.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Initialization array to be used by :func:`idzr_aid`.
    :rtype: :class:`numpy.ndarray`
    )r   r   rg   r   r   r   r     s    r   c           
      C   s   t | } | j\}}t jd| d | d| d |  d|d   d|  d dd	d
}t|||}||d|j< t| ||\}}}}	|	rt|||fS )a  
    Compute SVD of a complex matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    rO      ri   rj   r   
   Z   r   r   rb   N)	r   r
   r#   rP   r   r/   r   	idzr_asvdr9   rm   r   r   r   r   !  s    

6 r   c                 C   sB   t | |||\}}|d|||   j||| fdd}||fS )a  
    Compute ID of a complex matrix to a specified rank using random
    matrix-vector multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    Nr   r   )r   idzr_ridr&   )r   r   r{   r)   r*   r,   r   r   r   r   G  s    &r   c           	      C   s,   t | ||||\}}}}|r"t|||fS )a  
    Compute SVD of a complex matrix to a specified rank using random
    matrix-vector multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   	idzr_rsvdr9   )	r   r   r{   rB   r)   r;   r<   r=   r>   r   r   r   r   k  s    #r   )r?   )r?   )r?   )r?   )?__doc__Zscipy.linalg._interpolativelinalgZ_interpolativer   numpyr   RuntimeErrorr9   r   r   r   r   r   r   r   r   r"   r-   r0   r4   r6   r8   r@   rF   rH   rJ   rQ   rT   r\   r^   r_   r`   re   rd   rl   rn   ro   rp   rq   rr   rs   rt   ru   rv   rw   rx   ry   rz   r|   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   sr   #
 
.$*&"0$$-#
 
.$*("0&$