U
    ¿|eÂš  ã                   @   s4   d Z ddlZdadd„ Zdd„ Zdd„ Zd	d
„ ZdS )aQ  This file contains information on how to translate different ufuncs
into numba. It is a database of different ufuncs and how each of its
loops maps to a function that implements the inner kernel of that ufunc
(the inner kernel being the per-element function).

Use the function get_ufunc_info to get the information related to the
ufunc
é    Nc                   C   s   t d kri a tt ƒ d S )N)Ú	_ufunc_dbÚ_fill_ufunc_db© r   r   úN/var/www/website-v5/atlas_env/lib/python3.8/site-packages/numba/np/ufunc_db.pyÚ_lazy_init_db   s    r   c                   C   s   t ƒ  t ¡ S )z+obtain a list of supported ufuncs in the db)r   r   Úkeysr   r   r   r   Ú
get_ufuncs   s    r   c                 C   s   t ƒ  t|  S )aƒ  get the lowering information for the ufunc with key ufunc_key.

    The lowering information is a dictionary that maps from a numpy
    loop string (as given by the ufunc types attribute) to a function
    that handles code generation for a scalar version of the ufunc
    (that is, generates the "per element" operation").

    raises a KeyError if the ufunc is not in the ufunc_db
    )r   r   )Ú	ufunc_keyr   r   r   Úget_ufunc_info    s    
r
   c                 C   s<  ddl m} ddlm}m}m} ddlm} |j|jdœ| t	j
< |j|j|j|j|j|j|j|j|j|j|j|j|j|j|jdœ| t	j< |j|j|j|j|j|j|j|j|j|j|j|j|j|j|jdœ| t	j< |j|j|j|j|j|j|j|j|j|j|j|j|j|j|jdœ| t	j< |j|j|j|j|j|j|j|j|j|j|j|j|j|jdœ| t	j< |j|j|j|j|j|j|j|j|j|j|j|j|j|j |j d	œ| t	j!< |j"|j#|j#|j#|j#|j#|j#|j#|j#|j#|j#|j$|j$|j%|j%d	œ| t	j&< |j'|j(|j(|j(|j(|j(|j(|j(|j(|j(|j(|j)|j)|j*|j*d	œ| t	j+< t	j,t	j-kr†|j.|j/|j.|j/|j.|j/|j.|j/|j.|j/|j0|j0|j1|j1d
œ| t	j,< |j2|j2|j2|j2|j2|j2|j2|j2|j2|j2|j0|j0|j1|j1dœ| t	j-< |j.|j/|j.|j/|j.|j/|j.|j/|j.|j/|j3|j3dœ| t	j4< |dk r*| t	j4  5|j6|j6dœ¡ |j7|j8|j7|j8|j7|j8|j7|j8|j7|j8|j9|j9dœ| t	j:< |j;|j<|j;|j<|j;|j<|j;|j<|j;|j<|j=|j=dœ| t	j>< |j?|j?|j?|j?|j?|j?|j?|j?|j?|j?|j@|j@dœ| t	jA< |jB|jBdœ| t	jC< |jD|jDdœ| t	jE< |jF|jF|jF|jF|jF|jF|jF|jF|jF|jF|jG|jG|jH|jHd
œ| t	jI< |jJ|jJ|jK|jKdœ| t	jL< |jM|jM|jM|jM|jM|jM|jM|jM|jM|jMdœ
| t	jN< |jO|jO|jO|jO|jO|jO|jO|jO|jO|jOdœ
| t	jP< |jQ|jQ|jR|jRdœ| t	jS< |jT|jT|jT|jT|jT|jT|jT|jT|jT|jT|jT|jT|jU|jUdœ| t	jV< |jW|jW|jX|jXdœ| t	jY< |jZ|jZ|j[|j[dœ| t	j\< |j]|j]|j^|j^dœ| t	j_< |j`|j`|ja|jadœ| t	jb< |jc|jc|jd|jddœ| t	je< |jf|jf|jg|jgdœ| t	jh< |ji|ji|jj|jjdœ| t	jk< |jl|jl|jm|jmdœ| t	jn< |jo|jo|jo|jo|jo|jo|jo|jo|jo|jo|jp|jp|jq|jqdœ| t	jr< |js|jsdœ| t	jt< |ju|ju|ju|ju|ju|ju|ju|ju|ju|ju|jv|jv|jw|jwdœ| t	jx< |jy|jy|jz|jzdœ| t	j{< |j||j||j}|j}dœ| t	j~< |j}|j€|j€||dœ| t	j< |j‚}|jƒ|jƒ||dœ| t	j„< |j…|j…|j†|j†dœ| t	j‡< |jˆ}|j‰|j‰||dœ| t	jŠ< |j‹|j‹dœ| t	jŒ< |j|jdœ| t	jŽ< |j|j|j|jdœ| t	j‘< |j’|j’|j“|j“dœ| t	j”< |j•|j•|j–|j–dœ| t	j—< |j˜}	|j™|j™|	|	dœ| t	jš< |j›|j›|jœ|jœdœ| t	j< |jž}
|jŸ|jŸ|
|
dœ| t	j < |j¡|j¡dœ| t	j¢< | t	j¢ | t	j£< |j¤|j¤dœ| t	j¥< | t	j¥ | t	j¦< |j§|j§dœ| t	j¨< |j©|j©dœ| t	jª< |j«|j«dœ| t	j¬< |j­|j­dœ| t	j®< |j¯|j°|j¯|j°|j¯|j°|j¯|j°|j¯|j°|j¯|j±|j±|j²|j²dœ| t	j³< |j´|jµ|j´|jµ|j´|jµ|j´|jµ|j´|jµ|j´|j¶|j¶|j·|j·dœ| t	j¸< |j¹|jº|j¹|jº|j¹|jº|j¹|jº|j¹|jº|j¹|j»|j»|j¼|j¼dœ| t	j½< |j¾|j¿|j¾|j¿|j¾|j¿|j¾|j¿|j¾|j¿|j¾|jÀ|jÀ|jÁ|jÁdœ| t	jÂ< |jÃ|jÃ|jÃ|jÃ|jÃ|jÃ|jÃ|jÃ|jÃ|jÃ|jÃ|jÄ|jÄ|jÅ|jÅdœ| t	jÆ< |jÇ|jÇ|jÇ|jÇ|jÇ|jÇ|jÇ|jÇ|jÇ|jÇ|jÇ|jÈ|jÈ|jÉ|jÉdœ| t	jÊ< |jË|jË|jË|jË|jË|jË|jË|jË|jË|jË|jË|jË|jË|jÌ|jÌdœ| t	jÍ< |jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÎ|jÏ|jÏdœ| t	jÐ< |jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÑ|jÒ|jÒdœ| t	jÓ< |jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÔ|jÕ|jÕdœ| t	jÖ< |jÎ|j×|jØ|j×|jØ|j×|jØ|j×|jØ|j×|jØ|jÙ|jÙ|jÚ|jÚd	œ| t	jÛ< |jË|jÜ|jÝ|jÜ|jÝ|jÜ|jÝ|jÜ|jÝ|jÜ|jÝ|jÞ|jÞ|jß|jßd	œ| t	jà< |jÎ|j×|jØ|j×|jØ|j×|jØ|j×|jØ|j×|jØ|já|já|jâ|jâd	œ| t	jã< |jË|jÜ|jÝ|jÜ|jÝ|jÜ|jÝ|jÜ|jÝ|jÜ|jÝ|jä|jä|jå|jåd	œ| t	jæ< |jç|jç|jè|jè|jé|jé|jé|jé|jé|jé|jé|jé|jé|jé|jé|j|jdœ| t	jê< |jë|jë|jì|jì|jí|jí|jí|jí|jí|jí|jí|jí|jí|jí|jí|jí|jídœ| t	jî< |jï|jï|jð|jð|jñ|jñ|jñ|jñ|jñ|jñ|jñ|jñ|jñ|jñ|jñ|jò|jòdœ| t	jó< |jô|jôdœ| t	jõ< |jö|jödœ| t	j÷< |jø|jødœ| t	jù< |jú|júdœ| t	jû< |jü|jü|jü|jüdœ| t	jý< |j'|j'|j'|j'|j'|j'|j'|j'|j'|j'|j'dœ| t	jþ< |j|j|j|j|j|j|j|j|j|j|jdœ| t	jÿ< |j"|j"|j"|j"|j"|j"|j"|j"|j"|j"|j"dœ| t	j < |j|j|j|j|j|j|j|j|j|j|jdœ| t	j< |j|j|j|j|j|j|j|j|j|jdœ
| t	j< |j|j|j|j|j|j|j|j|j|jdœ
| t	j< ddl m} | t	j  5d|ji¡ | t	j  5d|ji¡ | t	j  5d|j	i¡ | t	j  5d|j
i¡ | t	j!  5|j|j|jdœ¡ | t	j&  5|j|j|jd œ¡ | t	j+  5|j|j|j|jd!œ¡ t	j,t	j-krš| t	j,  5|j|j|jd"œ¡ | t	j-  5|j|j|jd"œ¡ | t	j4  5|j|jd#œ¡ | t	j4  5d$|ji¡ | t	jÊ  5|j|jd%œ¡ | t	jÆ  5|j|jd%œ¡ | t	j½  5|j|jd%œ¡ | t	jÂ  5|j|jd%œ¡ | t	j³  5|j|jd%œ¡ | t	j¸  5|j |j!d%œ¡ | t	jÛ  5|j"|j#d&œ¡ | t	jà  5|j$|j%d&œ¡ | t	jã  5|j&|j'd&œ¡ | t	jæ  5|j(|j)d&œ¡ | t	j:  5d'|j*i¡ d S )(Nr   )Únpyfuncs)Ú	cmathimplÚmathimplÚnumbers)Únumpy_version)úM->?úm->?)ú?->?úb->búB->Búh->húH->Húi->iúI->Iúl->lúL->Lúq->qúQ->Qúf->fúd->dúF->FúD->D)r   r   r   r   r   r   r   r   r   r   r   r   r   zF->fzD->d)r   r   r   r   r   r   r   r   r   r   r   r   r   r    )ú??->?úbb->búBB->Búhh->húHH->Húii->iúII->Iúll->lúLL->Lúqq->qúQQ->Qúff->fúdd->dúFF->FúDD->D)r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   )zbb->dzBB->dzhh->dzHH->dzii->dzII->dzll->dzLL->dzqq->dzQQ->dr,   r-   r.   r/   )r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   )é   é   )r.   r/   )zbb->bbzBB->BBzhh->hhzHH->HHzii->iizII->IIzll->llzLL->LLzqq->qqzQQ->QQzff->ffzdd->dd)r,   r-   )r,   r-   r.   r/   )
r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   )r   r   r   r    )r   r   )r!   zbb->?zBB->?zhh->?zHH->?zii->?zII->?zll->?zLL->?zqq->?zQQ->?zff->?zdd->?zFF->?zDD->?)r   úb->?úB->?úh->?úH->?úi->?úI->?úl->?úL->?úq->?úQ->?úf->?úd->?úF->?úD->?)r<   r=   r>   r?   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r   r   r   )r<   r=   r>   r?   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r   r   r   )r<   r=   )zfi->fzfl->fzdi->dzdl->d)r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   )r   r   r   r   r   r   r   r   r   r   r   )Ú
npdatetimezm->m)úmm->múMm->MzmM->M)rA   rB   zMM->m)úmq->múmd->mzqm->mzdm->m)rC   rD   zmm->d)rC   rD   zmm->q)zMM->?zmm->?)zMM->MrA   rA   (+  Únumba.npr   Únumba.cpythonr   r   r   Únumba.np.numpy_supportr   Znp_datetime_isnat_implÚnpÚisnatZint_invert_implZint_negate_implZreal_negate_implZcomplex_negate_implÚnegativeZint_positive_implZreal_positive_implZcomplex_positive_implÚpositiveZint_abs_implZuint_abs_implZreal_abs_implZcomplex_abs_implÚabsoluteZint_sign_implZreal_sign_implZnp_complex_sign_implÚsignZint_or_implZint_add_implZreal_add_implZcomplex_add_implÚaddZint_xor_implZint_sub_implZreal_sub_implZcomplex_sub_implÚsubtractZint_and_implZint_mul_implZreal_mul_implZcomplex_mul_implÚmultiplyÚdivideÚtrue_divideZnp_int_sdiv_implZnp_int_udiv_implZnp_real_div_implZnp_complex_div_implZnp_int_truediv_implZnp_real_floor_div_implÚfloor_divideÚupdateZnp_complex_floor_div_implZnp_int_srem_implZnp_int_urem_implZnp_real_mod_implÚ	remainderZnp_int_sdivrem_implZnp_int_udivrem_implZnp_real_divmod_implÚdivmodZnp_int_fmod_implZnp_real_fmod_implÚfmodZnp_real_logaddexp_implÚ	logaddexpZnp_real_logaddexp2_implÚ
logaddexp2Zint_power_implZreal_power_implZnp_complex_power_implÚpowerZreal_float_power_implZnp_complex_float_power_implÚfloat_powerZnp_gcd_implÚgcdZnp_lcm_implÚlcmZnp_real_rint_implZnp_complex_rint_implÚrintZreal_conjugate_implZcomplex_conjugate_implÚ	conjugateZnp_real_exp_implZnp_complex_exp_implÚexpZnp_real_exp2_implZnp_complex_exp2_implÚexp2Znp_real_log_implZnp_complex_log_implÚlogZnp_real_log2_implZnp_complex_log2_implÚlog2Znp_real_log10_implZnp_complex_log10_implÚlog10Znp_real_expm1_implZnp_complex_expm1_implÚexpm1Znp_real_log1p_implZnp_complex_log1p_implÚlog1pZnp_real_sqrt_implZnp_complex_sqrt_implÚsqrtZnp_int_square_implZnp_real_square_implZnp_complex_square_implÚsquareZnp_real_cbrt_implÚcbrtZnp_int_reciprocal_implZnp_real_reciprocal_implZnp_complex_reciprocal_implÚ
reciprocalZnp_real_sin_implZnp_complex_sin_implÚsinZnp_real_cos_implZnp_complex_cos_implÚcosÚtan_implZnp_real_tan_implÚtanZ	asin_implZnp_real_asin_implÚarcsinZnp_real_acos_implZ	acos_implÚarccosZ	atan_implZnp_real_atan_implÚarctanZnp_real_atan2_implÚarctan2Znp_real_hypot_implÚhypotZnp_real_sinh_implZnp_complex_sinh_implÚsinhZnp_real_cosh_implZnp_complex_cosh_implÚcoshZnp_real_tanh_implZnp_complex_tanh_implÚtanhZ
asinh_implZnp_real_asinh_implÚarcsinhZnp_real_acosh_implZnp_complex_acosh_implÚarccoshZ
atanh_implZnp_real_atanh_implÚarctanhZradians_float_implÚdeg2radÚradiansZdegrees_float_implÚrad2degÚdegreesZnp_real_floor_implÚfloorZnp_real_ceil_implÚceilZnp_real_trunc_implÚtruncZnp_real_fabs_implÚfabsZint_ugt_implZint_sgt_implZreal_gt_implZnp_complex_gt_implÚgreaterZint_uge_implZint_sge_implZreal_ge_implZnp_complex_ge_implÚgreater_equalZint_ult_implZint_slt_implZreal_lt_implZnp_complex_lt_implÚlessZint_ule_implZint_sle_implZreal_le_implZnp_complex_le_implÚ
less_equalZint_ne_implZreal_ne_implZnp_complex_ne_implÚ	not_equalZint_eq_implZreal_eq_implZnp_complex_eq_implÚequalZnp_logical_and_implZnp_complex_logical_and_implÚlogical_andZnp_logical_or_implZnp_complex_logical_or_implÚ
logical_orZnp_logical_xor_implZnp_complex_logical_xor_implÚlogical_xorZnp_logical_not_implZnp_complex_logical_not_implÚlogical_notZnp_int_smax_implZnp_int_umax_implZnp_real_maximum_implZnp_complex_maximum_implÚmaximumZnp_int_smin_implZnp_int_umin_implZnp_real_minimum_implZnp_complex_minimum_implÚminimumZnp_real_fmax_implZnp_complex_fmax_implÚfmaxZnp_real_fmin_implZnp_complex_fmin_implÚfminZnp_real_isnan_implZnp_complex_isnan_implZnp_int_isnan_implÚisnanZnp_real_isinf_implZnp_complex_isinf_implZnp_int_isinf_implÚisinfZnp_real_isfinite_implZnp_complex_isfinite_implZnp_int_isfinite_implZnp_datetime_isfinite_implÚisfiniteZnp_real_signbit_implÚsignbitZnp_real_copysign_implÚcopysignZnp_real_nextafter_implÚ	nextafterZnp_real_spacing_implÚspacingZnp_real_ldexp_implÚldexpÚbitwise_andÚ
bitwise_orÚbitwise_xorÚinvertZint_shl_implÚ
left_shiftZint_shr_implÚright_shiftr@   Ztimedelta_neg_implZtimedelta_pos_implZtimedelta_abs_implZtimedelta_sign_implZtimedelta_add_implZdatetime_plus_timedeltaZtimedelta_plus_datetimeZtimedelta_sub_implZdatetime_minus_timedeltaZdatetime_minus_datetimeZtimedelta_times_numberZnumber_times_timedeltaZtimedelta_over_numberZtimedelta_over_timedeltaZtimedelta_floor_div_timedeltaZdatetime_eq_datetime_implZtimedelta_eq_timedelta_implZdatetime_ne_datetime_implZtimedelta_ne_timedelta_implZdatetime_lt_datetime_implZtimedelta_lt_timedelta_implZdatetime_le_datetime_implZtimedelta_le_timedelta_implZdatetime_gt_datetime_implZtimedelta_gt_timedelta_implZdatetime_ge_datetime_implZtimedelta_ge_timedelta_implZdatetime_maximum_implZtimedelta_maximum_implZdatetime_minimum_implZtimedelta_minimum_implZdatetime_fmax_implZtimedelta_fmax_implZdatetime_fmin_implZtimedelta_fmin_implZtimedelta_mod_timedelta)Úufunc_dbr   r   r   r   r   rm   Zarcsin_implZarctan_implZarcsinh_implZarctanh_implr@   r   r   r   r   .   s   ýñññòñññòòô

þôôôþþïüööüòüüüüüüüüòþòüüüüüüþþüüüüüüþþþþþþññññññññññññññèèèþþþþü	õõõõöö
 ÿ
 ÿ
 ÿ
 ÿ
ý
ý
ü
ý
ý
þ
 ÿ
þ
þ
þ
þ
þ
þ
þ
þ
þ
þ
 ÿr   )Ú__doc__ÚnumpyrH   r   r   r   r
   r   r   r   r   r   Ú<module>   s   
