U
    |e)                    @   s
  d Z ddlZddlZddlZddlmZ ddlmZ ddl	m
Z
mZmZ ddlmZmZmZ ddlmZ ddlmZmZ dd	lmZ dd
lmZ edZejZedZedZdd Ze  Z!dZ"e#ee"Z$e%ee&ee"ee!egZ'e(e'Z)dd Z*dd Z+dd Z,dd Z-dd Z.dd Z/dd Z0dd  Z1d!d" Z2d#d$ Z3d%d& Z4d'd( Z5eej6d)d* Z7eejj6d+d* Z7d,d- Z8eejd.d/ Z9eejjeejj:eejj;eejj<d0d1 Z=eejjeejj:eejj;eejj<d2d3 Z>eej?eej@d4d5 ZAeejjBeejjCd6d7 ZDeejjCd8d9 ZEeejjCd:d; ZFeejjBd<d= ZGeejjCd>d? ZHd@dA ZIdBdC ZJdDdE ZKeejLdFdG ZMdHdI ZNeejOdJdK ZPeejOdLdM ZQdNdO ZReejOdPdQ ZSeejTdRdS ZUeejjTdTdU ZVeejjTdVdW ZWeejjTdXdY ZXeejYdZd[ ZZeejjYd\d] Z[eejYd^d_ Z\eejjYd`da Z]eejYdbdc Z^eejjYddde Z_dfdg Z`eejjYdhdi Zaeejbdjdk Zceejbdldm Zdeejjbdndm Zdeejjbdodp Zeeejfdqdr Zgeejjheejjidsdr Zgeejjidtdr Zgdudv Zjeejjidwdx Zkeejjhdydz Zleejmd{d| Zneejjod}d| Znd~d Zpeejjodd Zqeejrdd Zseejjtdd Zueejjtdd Zueejjveejjtdd Zueejjvdd Zweejjxdd Zyeejjxdd Zzeejjxdd Z{eejjxdd Z|eej}dd Z~dd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd ZeejjddÄ Zddń ZeejjddǄ ZeejjddɄ Zeejjdd˄ Zeejjdd̈́ Zddτ Zddф Zeejjddӄ Zeejjddӄ Zeejjddք Zeejjdd؄ Zeejjddڄ Zeejjdd܄ Zeejjddބ Zeejjddބ Zeejjdd Zeejjdd Zdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zdd Zeejădd Zeejjădd Zeejjƃdd Zeejjȃdd ZeejjɃd d ZeejjʃdddZeejj˃dddZeejj̃dd Zeejj̃dd	dZed
d Zeejj΃dd Zeejj΃dddZedd Zedd ZdS (  z6
Implement the random and np.random module functions.
    N)ir)is_nonelike)	intrinsicoverloadregister_jitable)Registryimpl_ret_untrackedimpl_ret_new_ref	signature)typescgutils)arrayobj)NumbaTypeError
randomimpl    @   c                 C   s   t t| S N)r   Constantint32_t)x r   U/var/www/website-v5/atlas_env/lib/python3.8/site-packages/numba/cpython/randomimpl.py	const_int   s    r   ip  c                 C   sT   |dkst d| }ttd}t|j||}|jd |jd |	|dS )z
    Get a pointer to the given thread-local random state
    (depending on *name*: "py" or "np").
    If the state isn't initialized, it is lazily initialized with
    system entropy.
    )pynpinternalznumba_get_%s_random_stater   readnonenounwind)
AssertionErrorr   FunctionTypernd_state_ptr_tr   get_or_insert_functionmodule
attributesaddcall)contextbuildername	func_namefntyfnr   r   r   get_state_ptr4   s    r-   c                 C   s   t | |dS )z@
    Get a pointer to the thread-local Python random state.
    r   r-   r'   r(   r   r   r   get_py_state_ptrE   s    r0   c                 C   s   t | |dS )z?
    Get a pointer to the thread-local Numpy random state.
    r   r.   r/   r   r   r   get_np_state_ptrK   s    r1   c                 C   s   t | |dS )zB
    Get a pointer to the thread-local internal random state.
    r   r.   r/   r   r   r   get_internal_state_ptrQ   s    r2   c                 C   s   t | |ddS Nr   r   gep_inboundsr(   	state_ptrr   r   r   get_index_ptrX   s    r8   c                 C   s   t | |ddS Nr      r4   r6   r   r   r   get_array_ptr[   s    r;   c                 C   s   t | |ddS )Nr      r4   r6   r   r   r   get_has_gauss_ptr^   s    r=   c                 C   s   t | |ddS )Nr      r4   r6   r   r   r   get_gauss_ptra   s    r?   c                 C   s8   t t  tf}t| jj|d}|jd 	d |S )z<
    Get the internal function to shuffle the MT taste.
    Znumba_rnd_shuffler   	nocapture)
r   r    VoidTyper!   r   r"   functionr#   argsadd_attribute)r(   r+   r,   r   r   r   get_rnd_shuffled   s    rE   c           	   
   C   s"  t ||}||}|d|t}t||, t|}|||f |t	d| W 5 Q R X ||}t
||}|t||d|}||t	d}||| ||||t	d}|||||t	dt	d}|||||t	dt	d}||||t	d	}|S )
zB
    Get the next int32 generated by the PRNG at *state_ptr*.
    >=r   r:         l   VX:    l     _    )r8   loadicmp_unsignedN_constr   if_unlikelyrE   r&   storer   r;   r5   r%   xorlshrand_shl)	r'   r(   r7   ZidxptridxZneed_reshuffler,   Z	array_ptryr   r   r   get_next_int32o   s*    



rV   c                 C   st   | t| ||td}| t| ||td}||t}||t}|||||t	tdt	tdS )zC
    Get the next double generated by the PRNG at *state_ptr*.
          g      Ag      @C)
rQ   rV   r   uitofpdoublefdivfaddfmulr   r   )r'   r(   r7   abr   r   r   get_next_double   s    
r`   c                    s  t |jd fdd}t t td} d|} |\}}	|" ||}
  	|
t| W 5 Q R X |	r r| 
|}t }
s| 
|}  	|
t  	|tt td} || W 5 Q R X W 5 Q R X  |S )z2
    Get the next integer with width *nbits*.
    r   c                    s     | }t }| jj|jjk r8 ||j}n| jj|jjkrV ||j}r t|jd} 	||} 
||S  	||S d S r3   )subrV   typewidthzexttruncnot_r   r   rQ   rR   )nbitsshiftrU   maskr(   Zc32r'   is_numpyr7   r   r   get_shifted_int   s    z%get_next_int.<locals>.get_shifted_intr   <=)r   r   rb   r   alloca_once_valueint64_trL   if_elserO   rd   ra   rV   r%   rS   rK   )r'   r(   r7   rg   rk   rl   retZis_32bZifsmallZiflargelowhightotalr   rj   r   get_next_int   s,    

 ru   c                 C   s   t | tjrtdS d S Nr   
isinstancer   Integer
_seed_implseedr   r   r   	seed_impl   s    r}   c                 C   s   t | tjrtdS d S Nr   rw   r{   r   r   r   r}      s    c                    s   t fdd  fddS )Nc                    s    fdd}t tjtj|fS )Nc                    sR   |\}t t  ttf}t|jj|d}|	|t
| | |f | tjd S )NZnumba_rnd_init)r   r    rA   r!   r   r   r"   rB   r#   r&   r-   get_constantr   none)r'   r(   sigrC   Z
seed_valuer+   r,   
state_typer   r   codegen   s    z*_seed_impl.<locals>._impl.<locals>.codegen)r   r   voiduint32)typingcontextr|   r   r   r   r   _impl   s    z_seed_impl.<locals>._implc                    s    | S r   r   r{   r   r   r   <lambda>       z_seed_impl.<locals>.<lambda>r   r   r   )r   r   r   rz      s    
rz   c                      s   t dd   fddS )Nc                 S   s   dd }t tj|fS )Nc                 S   s   t | |d}t| ||S rv   r-   r`   r'   r(   r   rC   r7   r   r   r   r      s    z+random_impl.<locals>._impl.<locals>.codegen)r   r   rZ   r   r   r   r   r   r      s    zrandom_impl.<locals>._implc                      s     S r   r   r   r   r   r   r      r   zrandom_impl.<locals>.<lambda>r   r   r   r   r   random_impl   s    
r   c                      s   t dd   fddS )Nc                 S   s   dd }t tj|fS )Nc                 S   s   t | |d}t| ||S r~   r   r   r   r   r   r      s    z,random_impl0.<locals>._impl.<locals>.codegen)r   r   float64r   r   r   r   r      s    zrandom_impl0.<locals>._implc                      s     S r   r   r   r   r   r   r      r   zrandom_impl0.<locals>.<lambda>r   r   r   r   r   random_impl0   s    
r   c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   r   randomsizer   r   r   r     r   zrandom_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   emptyflatranger   r   r   outout_flatrT   r   r   r   r     s
    
zrandom_impl1.<locals>._implr   rx   r   ry   UniTupledtyper   r   r   r   r   random_impl1   s    r   c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS rv   _double_preprocessorr   r   r   _gauss_implr   locscaleloc_preprocessorscale_preprocessorr   r   r   r     s
    
zgauss_impl.<locals>._implc                    s
    | |S r   r   r   r   r   r   r   r     r   zgauss_impl.<locals>.<lambda>rx   r   Floatry   r   r   r   r   r   
gauss_impl  s     

r   c                   C   s   dd S )Nc                   S   s   t jddS N              ?r   r   normalr   r   r   r   r      r   z np_gauss_impl0.<locals>.<lambda>r   r   r   r   r   np_gauss_impl0  s    r   c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS Nr   r   r   r   r   r   r   &  r   z np_gauss_impl1.<locals>.<lambda>rx   r   r   ry   r   r   r   r   np_gauss_impl1#  s    r   c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS r~   r   r   r   r   r   r   -  s
    
znp_gauss_impl2.<locals>._implc                    s
    | |S r   r   r   r   r   r   r   3  r   z np_gauss_impl2.<locals>.<lambda>r   r   r   r   r   np_gauss_impl2)  s     

r   c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   r   r   standard_normalr   r   r   r   r   9  r   z'standard_normal_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   =  s
    
z$standard_normal_impl1.<locals>._implr   r   r   r   r   standard_normal_impl16  s    r   c                 C   s   t | tjtjfr4t |tjtjfr4t|r4dd S t | tjtjfrt |tjtjfrt |tjs~t |tjrt |jtjrdd }|S d S )Nc                 S   s   t j| |S r   r   r   r   r   r   r   r   r   K  r   z np_gauss_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   rT   r   r   r   r   Q  s
    
znp_gauss_impl3.<locals>._implrx   r   r   ry   r   r   r   r   r   r   r   r   r   r   np_gauss_impl3F  s*     
 


r   c                    s    fdd}|S )Nc                     sh   d   d } d   d }| |  ||  }|dk r |dkr q@q t dt | | }||  || fS )zG
        Compute a pair of numbers on the normal distribution.
               @r   r          )mathsqrtlog)x1x2r2f_randomr   r   compute_gauss_pair[  s    z,_gauss_pair_impl.<locals>.compute_gauss_pairr   )r   r   r   r   r   _gauss_pair_implZ  s    r   c                    s    fdd}|S )Nc                    sJ  |j }| |}tjtjjd }t| |}tj||dd}t||}	t||}
t	||
|
}||\}}|( ||
|	| |td|
 W 5 Q R X |` | |t|tt|dd}t||d\}}|||	 ||| |td|
 W 5 Q R X W 5 Q R X |\}}| ||||||
|S )N)r   r   resultr)   r   r<   r   r:   )return_typeget_data_typer   r   r-   r   alloca_oncer?   r=   is_truerK   rp   rO   r   compile_internalr   r   r   r   unpack_tupler\   r]   )r'   r(   r   rC   tylltyr   r7   rq   Z	gauss_ptrZhas_gauss_ptr	has_gaussthen	otherwisepairfirstsecondmusigmar   r   stater   r   r   m  s@    


$z_gauss_impl.<locals>._implr   )r   r   r   r   r   r   r   r   l  s    $r   c                    sr   t j  t| tjr6| jr( fddS  fddS n8t| tjrb| jdkrX fddS dd S ntd|  d S )Nc                    s   |  | S r   )sitofpr(   vr   r   r   r     r   z&_double_preprocessor.<locals>.<lambda>c                    s   |  | S r   )rY   r   r   r   r   r     r   r   c                    s   |  | S r   )fpextr   r   r   r   r     r   c                 S   s   |S r   r   )_builderr   r   r   r   r     r   z(Cannot convert {} to floating point type)	r   r   
DoubleTyperx   ry   signedr   bitwidth	TypeError)valuer   r   r   r     s    


r   c                    s(   t | tjr$tdd   fddS d S )Nc                 S   s   dd }t tj||fS )Nc           	   	   S   s|   |\}| d|td}| d|td}t|||| d}| j|t|f W 5 Q R X t| |d}t	| |||dS )NrF   A   ==r   z getrandbits() limited to 64 bitsr   F)
rL   r   r   rN   or_	call_convreturn_user_excOverflowErrorr-   ru   )	r'   r(   r   rC   rg   	too_large	too_smallmsgr7   r   r   r   r     s    
z0getrandbits_impl.<locals>._impl.<locals>.codegen)r   r   uint64)r   kr   r   r   r   r     s    zgetrandbits_impl.<locals>._implc                    s    | S r   r   r   r   r   r   r     r   z"getrandbits_impl.<locals>.<lambda>)rx   r   ry   r   r   r   r   r   getrandbits_impl  s    
r   c              
      sN  t  td}td}	tj dd}
  |||
   d||8  	 	 
|
||	} || |
 W 5 Q R X   d||	8   	 
|
||	} || |
 W 5 Q R X  
|
t  d| d}j t|f W 5 Q R X ttjjg}t jj|d	 }d
krn |	n}  ||tjgt ttjtj dd fdd}d
kr.  d|	<\}}|  | W 5 Q R X | |  W 5 Q R X W 5 Q R X n|   	|  
|S )Nr   r:   nr   <>rm   zempty range for randrange()zllvm.ctlz.%sr   rc                     s~     d}   d} |   |  t dk} |} d|} || |  |  | d S )Nwhilez	while.endr   rF   )append_basic_blockbranchposition_at_endru   re   icmp_signedcbranchrO   )Zbbwhilebbendr   r   r(   r'   r   rg   rptrr   r7   r   r   r   get_num  s    




z _randrange_impl.<locals>.get_numr   )r-   r   r   r   r   rO   ra   if_thenr  r%   rK   sdivrN   r   r   
ValueErrorr    true_bitrb   r"   rB   r#   re   r&   r   rc   rp   mul)r'   r(   startstopstepr   r   r   zerooneZnptrwr   r+   r,   nm1r  Zis_oneZ
is_not_oner   r  r   _randrange_impl  sD    


r  c                 C   s   t | tjrdd S d S )Nc                 S   s   t d| dS r9   r   	randranger  r   r   r   r     r   z"randrange_impl_1.<locals>.<lambda>rx   r   ry   r  r   r   r   randrange_impl_1   s    r  c                 C   s$   t | tjr t |tjr dd S d S )Nc                 S   s   t | |dS Nr:   r  r  r  r   r   r   r   	  r   z"randrange_impl_2.<locals>.<lambda>r  r  r   r   r   randrange_impl_2  s    r  c                 C   s,   |j | kr |jrtjjS tjjS dd S d S )Nc                 S   s   |S r   r   )r   r   Z_tyr   r   r   r     r   z)_randrange_preprocessor.<locals>.<lambda>)r   r   r   	IRBuildersextrd   )r   r   r   r   r   _randrange_preprocessor  s
    
r  c                    s   t | tjrt |tjrt |tjrt| j|j|jt| j|j|j}tj|t|t	|| t	||t	||t
fdd  fddS d S )Nc                    s&   fdd}t  ||||fS )Nc              	      sD   |\}}}|| }|| }|| }t | |||| dS rv   )r  r'   r(   r   rC   r  r  r  )	llvm_typer   start_preprocessorstep_preprocessorstop_preprocessorr   r   r   #  s    
  z0randrange_impl_3.<locals>._impl.<locals>.codegenr
   )r   r  r  r  r   )int_tyr!  r   r"  r#  r$  r   r   r   !  s    zrandrange_impl_3.<locals>._implc                    s    | ||S r   r   )r  r  r  r   r   r   r   ,  r   z"randrange_impl_3.<locals>.<lambda>rx   r   ry   maxr   r   from_bitwidthr   IntTyper  r   )r  r  r  r   r   )r   r%  r!  r   r"  r#  r$  r   randrange_impl_3  s    





r*  c                 C   s$   t | tjr t |tjr dd S d S )Nc                 S   s   t | |d dS r  r  r  r   r   r   r   2  r   z randint_impl_1.<locals>.<lambda>r  r  r   r   r   randint_impl_1/  s    r+  c                 C   s   t | tjrdd S d S )Nc                 S   s   t jd| S r3   r   r   randintrs   r   r   r   r   8  r   z#np_randint_impl_1.<locals>.<lambda>r  r.  r   r   r   np_randint_impl_15  s    r/  c                    s   t | tjrt |tjrt| j|jt| j|j}tj|t|t	|| t	||t
fdd  fddS d S )Nc                    s"   fdd}t  |||fS )Nc              	      sB   |\}}|| }|| }t  d}t| |||| dS )Nr:   r   )r   r   r  r   )r!  r   r"  r$  r   r   r   H  s      z1np_randint_impl_2.<locals>._impl.<locals>.codegenr
   )r   rr   rs   r   )r%  r!  r   r"  r$  r   r   r   F  s    z np_randint_impl_2.<locals>._implc                    s
    | |S r   r   rr   rs   r   r   r   r   Q  r   z#np_randint_impl_2.<locals>.<lambda>r&  )rr   rs   r   r   )r   r%  r!  r   r"  r$  r   np_randint_impl_2;  s    



r1  c                    s   t | tjr(t |tjr(t|r(dd S t | tjrt |tjrt |tjsft |tjrt |jtjrt| j|j}tt	d|   fdd}|S d S )Nc                 S   s   t j| |S r   r,  rr   rs   r   r   r   r   r   X  r   z#np_randint_impl_3.<locals>.<lambda>intc                    s:   t j| d}|j}t|jD ]}t j| |||< q|S N)r   )r   r   r   r   r   r   r-  rr   rs   r   r   r   rT   result_typer   r   r   `  s
    z np_randint_impl_3.<locals>._impl)
rx   r   ry   r   r   r   r'  r   getattrr   )rr   rs   r   r   r   r   r6  r   np_randint_impl_3T  s"    

r9  c                   C   s   dd S )Nc                   S   s   t ddS r   r   uniformr   r   r   r   r   k  r   zuniform_impl0.<locals>.<lambda>r   r   r   r   r   uniform_impl0i  s    r<  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   r;  r   r   r   r   r   p  r   z"np_uniform_impl0.<locals>.<lambda>r   r   r   r   r   np_uniform_impl0n  s    r>  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t | dS r   r:  rr   r   r   r   r   v  r   zuniform_impl1.<locals>.<lambda>r   r?  r   r   r   uniform_impl1s  s    r@  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r=  r?  r   r   r   r   |  r   z"np_uniform_impl1.<locals>.<lambda>r   r?  r   r   r   np_uniform_impl1y  s    rA  c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS rv   r   r   r   r   uniform_implr   rr   rs   Zlow_preprocessorZhigh_preprocessorr   r   r   r     s      zuniform_impl2.<locals>._implc                    s
    | |S r   r   r0  r   r   r   r     r   zuniform_impl2.<locals>.<lambda>r   r0  r   r   r   uniform_impl2  s     

rE  c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS r~   rB  rD  r   r   r   r     s      znp_uniform_impl2.<locals>._implc                    s
    | |S r   r   r0  r   r   r   r     r   z"np_uniform_impl2.<locals>.<lambda>r   r0  r   r   r   np_uniform_impl2  s     

rF  c                    s    fdd}|S )Nc           	         sT   t | |}|\}} ||}||}|||}t| ||}|||||S r   )r-   fsubr`   r\   r]   )	r'   r(   r   rC   r7   r^   r_   rc   r   a_preprocessorb_preprocessorr   r   r   impl  s    

zuniform_impl.<locals>.implr   )r   rI  rJ  rK  r   rH  r   rC    s    rC  c                 C   s   t | tjtjfr4t |tjtjfr4t|r4dd S t | tjtjfrt |tjtjfrt |tjs~t |tjrt |jtjrdd }|S d S )Nc                 S   s   t j| |S r   r=  r2  r   r   r   r     r   z"np_uniform_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r;  r5  r   r   r   r     s
    
znp_uniform_impl3.<locals>._implr   )rr   rs   r   r   r   r   r   np_uniform_impl3  s*     
 


rL  c                 C   s4   dd }t | tjtjfr0t |tjtjfr0|S d S )Nc                 S   s@   t   }d}||kr&d| }||  } }| ||  t||   S )N      ?r   r   r   r   )rr   rs   ucr   r   r   r     s    
z triangular_impl_2.<locals>._implr   )rr   rs   r   r   r   r   triangular_impl_2  s     
rQ  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   s`   || kr| S t   }||  ||   }||krFd| }d| }||  } }| ||  t||   S r   rN  )rr   rs   moderO  rP  r   r   r   r     s    
 triangular_impl_3.<locals>._implr   )rr   rs   rR  r   r   r   r   triangular_impl_3  s     
rT  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   sb   || kr| S t j }||  ||   }||krHd| }d| }||  } }| ||  t||   S r   )r   r   r   r   )rr   rR  rs   rO  rP  r   r   r   r     s    

rS  r   )rr   rR  rs   r   r   r   r   rT    s     
c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| ||S r   )r   r   
triangular)rr   rs   rR  r   r   r   r   r     s   
z!triangular_impl.<locals>.<lambda>c                 S   s8   t |}|j}t|jD ]}t j| ||||< q|S r   )r   r   r   r   r   r   rU  )rr   rs   rR  r   r   r   rT   r   r   r   r     s
    
ztriangular_impl.<locals>._implr   )rr   rs   rR  r   r   r   r   r   triangular_impl  s    rV  c                 C   s2   t | tjtjfr.t |tjtjfr.ttjS d S r   )rx   r   r   ry   _gammavariate_implr   alphabetar   r   r   gammavariate_impl  s
     
r[  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r   r   gammarY  r   r   r   r   
  r   z#gammavariate_impl.<locals>.<lambda>r   r^  r   r   r   r[    s    c                 C   s4   t | tjtjfr0t |tjtjfr0ttjjS d S r   )rx   r   r   ry   rW  r   r   rX  r   r   r   r[    s
     
c                    s    fdd}|S )Nc                    s  dt d }| dks|dkr&td| dkrt d|  d }| t d }| | }  }d|  k rpdk stqV qVd   }t |d|  | }| t | }	|| | }
|||  |	 }|| d|
  dks|t |
krV|	| S qVn| dkrt d    | S   }t j|  t j }|| }|dkrB|d|   }	nt || |   }	  }|dkr~||	| d  krqn|t |	 krqq|	| S d	S )
z1Gamma distribution.  Taken from CPython.
        r   g      @r   z*gammavariate: alpha and beta must be > 0.0r   g      @gHz>gP?N)r   r   r
  r   expe)rY  rZ  SG_MAGICCONSTainvbbbcccu1u2r   r   zr   rO  r_   pr   r   r   r     s@    
"


z!_gammavariate_impl.<locals>._implr   r   r   r   r   r   rW    s    7rW  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r\  rY  rZ  r   r   r   r   r   R  r   zgamma_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r]  rY  rZ  r   r   r   rT   r   r   r   r   V  s
    
zgamma_impl.<locals>._implr   rY  rZ  r   r   r   r   r   
gamma_implO  s    rm  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r   r   standard_gammarY  r   r   r   r   r   b  r   z%standard_gamma_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   ro  rY  r   r   r   rT   r   r   r   r   f  s
    
z"standard_gamma_impl.<locals>._implr   rY  r   r   r   r   r   standard_gamma_impl_  s    rs  c                 C   s2   t | tjtjfr.t |tjtjfr.ttjS d S r   )rx   r   r   ry   _betavariate_implr   gammavariaterX  r   r   r   betavariate_implo  s
     
rv  c                 C   s4   t | tjtjfr0t |tjtjfr0ttjjS d S r   )rx   r   r   ry   rt  r   r   r]  rX  r   r   r   rv  v  s
     
c                    s    fdd}|S )Nc                    s,    | d}|dkrdS || |d  S dS )z0Beta distribution.  Taken from CPython.
        r   r   Nr   )rY  rZ  rU   r]  r   r   r   ~  s    
z _betavariate_impl.<locals>._implr   )r]  r   r   rw  r   rt  }  s    
rt  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   rZ  rj  r   r   r   r     r   zbeta_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   rZ  rk  r   r   r   r     s
    
zbeta_impl.<locals>._implr   rl  r   r   r   	beta_impl  s    rx  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   t dt   |  S )z;Exponential distribution.  Taken from CPython.
            r   )r   r   r   )lambdr   r   r   r     s    zexpovariate_impl.<locals>._implrx   r   r   )ry  r   r   r   r   expovariate_impl  s    
r{  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   t dtj   |  S r   r   r   r   r   )r   r   r   r   r     s    exponential_impl.<locals>._implr   )r   r   r   r   r   exponential_impl  s    r~  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   exponential)r   r   r   r   r   r     r   z"exponential_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  )r   r   r   r   rT   r   r   r   r     s
    
r}  r   )r   r   r   r   r   r   r~    s    c                  C   s   dd } | S )Nc                   S   s   t dtj   S r   r|  r   r   r   r   r     s    r}  r   r   r   r   r   r~    s    c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   )r   r   standard_exponentialr   r   r   r   r     r   z+standard_exponential_impl.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
z(standard_exponential_impl.<locals>._implr   r   r   r   r   standard_exponential_impl  s    
r  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   	lognormalr   r   r   r   r     r   z$np_lognormal_impl0.<locals>.<lambda>r   r   r   r   r   np_lognormal_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   z%np_log_normal_impl1.<locals>.<lambda>r   r  r   r   r   np_log_normal_impl1  s    r  c                 C   s4   t | tjtjfr0t |tjtjfr0ttjjS d S r   )rx   r   r   ry   _lognormvariate_implr   r   r   r   r   r   r   r   np_log_normal_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  )r   r   r   r   r   r   r     r   z lognormal_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )r   r   r   r   r   rT   r   r   r   r     s
    
zlognormal_impl.<locals>._implr   )r   r   r   r   r   r   r   lognormal_impl  s    r  c                 C   s&   t | tjr"t |tjr"ttjS d S r   )rx   r   r   r  r   gaussr  r   r   r   lognormvariate_impl  s    r  c                    s    fddS )Nc                    s   t  | |S r   )r   r_  r  Z_gaussr   r   r     r   z&_lognormvariate_impl.<locals>.<lambda>r   r  r   r  r   r    s    r  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   dt    }d|d|    S )z)Pareto distribution.  Taken from CPython.r   )r   rY  rO  r   r   r   r     s    z!paretovariate_impl.<locals>._implrz  rY  r   r   r   r   paretovariate_impl  s    r  c                 C   s   t | tjrdd }|S d S )Nc                 S   s"   dt j  }d|d|    d S )Nr   r:   r   r  r   r   r   r     s    pareto_impl.<locals>._implrz  r  r   r   r   pareto_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   paretorp  r   r   r   r   "  r   zpareto_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rq  r   r   r   r   &  s
    
r  r   rr  r   r   r   r    s    c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s$   dt    }| t| d|   S )z*Weibull distribution.  Taken from CPython.r   )r   r   r   )rY  rZ  rO  r   r   r   r   3  s    z"weibullvariate_impl.<locals>._implr   )rY  rZ  r   r   r   r   weibullvariate_impl/  s     
r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s"   dt j  }t| d|   S r   r   r   r   r   )rZ  rO  r   r   r   r   ?  s    zweibull_impl.<locals>._implr   )rZ  r   r   r   r   weibull_impl<  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   weibull)rZ  r   r   r   r   r   J  r   zweibull_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  )rZ  r   r   r   rT   r   r   r   r   N  s
    
zweibull_impl2.<locals>._implr   )rZ  r   r   r   r   r   weibull_impl2G  s    r  c                 C   s&   t | tjr"t |tjr"ttjS d S r   )rx   r   r   _vonmisesvariate_implr   r   kappar   r   r   vonmisesvariate_implW  s    r  c                 C   s(   t | tjr$t |tjr$ttjjS d S r   )rx   r   r   r  r   r   r  r   r   r   r  ]  s    c                    s    fdd}|S )Nc                    s   |dkrdt j    S d| }|t d||   }  }t t j| }|||  }  }|d||  k s|d| t | kr6qq6d| }|| d||   }	  }
|
dkr| t |	 dt j  }n| t |	 dt j  }|S )zCircular data distribution.  Taken from CPython.
        Note the algorithm in Python 2.6 and Numpy is different:
        http://bugs.python.org/issue17141
        gư>r   rM  r   )r   pir   cosr_  acos)r   r  sr   re  rg  drf  qr   u3thetar   r   r   r   d  s"    &z$_vonmisesvariate_impl.<locals>._implr   ri  r   r   r   r  c  s    (r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   vonmises)r   r  r   r   r   r   r     r   zvonmises_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )r   r  r   r   r   rT   r   r   r   r     s
    
zvonmises_impl.<locals>._implr   )r   r  r   r   r   r   r   vonmises_impl  s    r  c                 C   s.   t | tjr*t |tjtjfr*dd }|S d S )Nc                 S   sJ  | dk rt dd|  kr$dks.n t d|dkr:dS |dkrF| S |dk}|rZd| }d| }d}||  }|dkr|d	K }| d	L } ||  }| dksntqn| | }t| |d
t|| d   }d}|dkrFd}	tj }
|}|	|kr|
|kr||r| |	 n|	7 }|d8 }q|
|8 }
|	d7 }	| |	 d | | |	|  }qq|S )z
            Binomial distribution.  Numpy's variant of the BINV algorithm
            is used.
            (Numpy uses BTPE for n*p >= 30, though)
            r   zbinomial(): n <= 0r   r   zbinomial(): p outside of [0, 1]rM  r:   gx0 r<         $@)r
  r   minr   r   r   r   )r   rh  Zflippedr  ZnitersqnZnp_prodboundrt   XUpxr   r   r   r     sF     


 binomial_impl.<locals>._implrx   r   ry   r   r   rh  r   r   r   r   binomial_impl  s     
1r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   binomial)r   rh  r   r   r   r   r     r   zbinomial_impl.<locals>.<lambda>c                 S   s<   t j|t jd}|j}t|jD ]}t j| |||< q |S r4  )r   r   intpr   r   r   r   r  )r   rh  r   r   r   rT   r   r   r   r     s
    r  r   )r   rh  r   r   r   r   r   r    s    c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   dt j| d  S Nr   rn  )dfr   r   r   r     s    zchisquare_impl.<locals>._implr   r  r   r   r   r   chisquare_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r   r   	chisquarerh  r   r   r   r   r     r   z!chisquare_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rh  r   r   r   rT   r   r   r   r     s
    
zchisquare_impl2.<locals>._implr   rh  r   r   r   r   r   chisquare_impl2  s    r  c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s    t j| | t j||   S r   r  )numdenomr   r   r   r     s    f_impl.<locals>._implr   )r  r  r   r   r   r   f_impl   s     
r  c                 C   sj   t | tjtjfr4t |tjtjfr4t|r4dd S t |tjsZt |tjrft |jtjrfdd }|S d S )Nc                 S   s   t j| |S r   )r   r   r   )r  r  r   r   r   r   r     r   zf_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   )r  r  r   r   r   rT   r   r   r   r     s
    
r  r   )r  r  r   r   r   r   r   r    s     
c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   | dks| dkrt dd|  }| dkrhtd}|  }}tj }||krd||9 }||7 }|d7 }qB|S ttdtj  t| S d S )Nr   r   z geometric(): p outside of (0, 1]gUUUUUU?r:   )r
  r3  r   r   r   ceilr   )rh  r  r  sumprodr  r   r   r   r      s    

geometric_impl.<locals>._implr   )rh  r   r   r   r   geometric_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   	geometricr  r   r   r   r   8  r   z geometric_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r4  )r   r   int64r   r   r   r   r  r  r   r   r   r   <  s
    r  r   r  r   r   r   r  5  s    c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s(   dt j  }| |tt|   S r   r  r   r   r  r   r   r   r   I  s    zgumbel_impl.<locals>._implr   )r   r   r   r   r   r   gumbel_implE  s     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   gumbelr   r   r   r   r   S  r   zgumbel_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r   W  s
    
zgumbel_impl3.<locals>._implr   r   r   r   r   gumbel_impl3P  s    r  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   s   t |t |  t | }tt|| }|}t |}|dkrl|dkrl|ttj |||   8 }|d8 }q2t || }| |krt || S |S dS )z'Numpy's algorithm for hypergeometric().r   r   r:   N)r3  floatr  r   floorr   r   )ngoodnbadnsamplesd1d2YKZr   r   r   r   e  s     
"hypergeometric_impl.<locals>._implr   )r  r  r  r   r   r   r   hypergeometric_impl`  s     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| ||S r   )r   r   hypergeometric)r  r  r  r   r   r   r   r   {  s    z%hypergeometric_impl.<locals>.<lambda>c                 S   s>   t j|t jd}|j}t|jD ]}t j| ||||< q |S r4  )r   r   r  r   r   r   r   r  )r  r  r  r   r   r   rT   r   r   r   r     s
    r  r   )r  r  r  r   r   r   r   r   r  x  s    c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   laplacer   r   r   r   r     r   zlaplace_impl0.<locals>.<lambda>r   r   r   r   r   laplace_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   zlaplace_impl1.<locals>.<lambda>r   r   r   r   r   laplace_impl1  s    r  c                 C   s,   t | tjtjfr(t |tjtjfr(tS d S r   )rx   r   r   ry   laplace_implr   r   r   r   laplace_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  r   r   r   r   r     r   zlaplace_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
zlaplace_impl3.<locals>._implr   r   r   r   r   laplace_impl3  s    r  c                 C   sF   t j }|dk r(| |t||   S | |td| |   S d S )NrM  r   r  r  r   r   r   r    s    
r  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   logisticr   r   r   r   r     r   z logistic_impl0.<locals>.<lambda>r   r   r   r   r   logistic_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   z logistic_impl1.<locals>.<lambda>r   r   r   r   r   logistic_impl1  s    r  c                 C   s,   t | tjtjfr(t |tjtjfr(tS d S r   )rx   r   r   ry   logistic_implr   r   r   r   logistic_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  r   r   r   r   r     r   z logistic_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
zlogistic_impl3.<locals>._implr   r   r   r   r   logistic_impl3  s    r  c                 C   s$   t j }| |t|d|    S r   r  r  r   r   r   r    s    
r  c                 C   s   | dks| dkrt dtd|  }tj }|| kr<dS tj }dt||  }||| krtdt|t|  S ||krdS dS q&dS )z"Numpy's algorithm for logseries().r   r   z logseries(): p outside of (0, 1]r:   r<   N)r
  r   r   r   r   r_  r  )rh  r   Vr  r  r   r   r   _logseries_impl  s    

r  c                 C   s   t | tjtjfrtS d S r   )rx   r   r   ry   r  )rh  r   r   r   logseries_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   	logseriesr  r   r   r   r     r   z logseries_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r4  )r   r   r  r   r   r   r   r  r  r   r   r   r     s
    zlogseries_impl.<locals>._implr   r  r   r   r   r    s    c                 C   s.   t | tjr*t |tjtjfr*dd }|S d S )Nc                 S   sJ   | dkrt d|dk s |dkr(t dtj| d| | }tj|S )Nr   znegative_binomial(): n <= 0r   r   z(negative_binomial(): p outside of [0, 1])r
  r   r   r]  poisson)r   rh  r  r   r   r   r   	  s    z%negative_binomial_impl.<locals>._implr  r  r   r   r   negative_binomial_impl  s     
r  c                   C   s   dd S )Nc                   S   s   t jdS r   r   r   r  r   r   r   r   r     r   zpoisson_impl0.<locals>.<lambda>r   r   r   r   r   poisson_impl0  s    r  c                    s.   t | tjtjfr*tdd   fddS d S )Nc                    s$   t |  fdd}ttj||fS )Nc              	      s  t | |}tj|tdd}|d}|d}|\}||}|d|ttd}	|	|	N t
tttf}
t|jj|
d}||||f}||| || W 5 Q R X || || tjjtj  fdd	}| ||||}||| || || ||S )
Nrq   r   bbcontr  rF   r  Znumba_poisson_ptrsc                    sV   | dk rt d| dkrdS  |  }d}d} }||9 }||krH|S |d7 }q.dS )ag  Numpy's algorithm for poisson() on small *lam*.

                    This method is invoked only if the parameter lambda of the
                    distribution is small ( < 10 ). The algorithm used is
                    described in "Knuth, D. 1969. 'Seminumerical Algorithms.
                    The Art of Computer Programming' vol 2.
                    r   zpoisson(): lambda < 0r   r   r:   Nr
  )lamZenlamr  r  r  _expr   r   r   poisson_impl<  s    
zCpoisson_impl1.<locals>._impl.<locals>.codegen.<locals>.poisson_impl)r1   r   r   ro   r   fcmp_orderedr   r   rZ   r  r    r!   r"   rB   r#   r&   rO   r   r  r   r   r   r_  r   rK   )r'   r(   r   rC   r7   retptrr  r  r  Zbig_lamr+   r,   rq   r  Zlam_preprocessorr  r   r      s8    









z-poisson_impl1.<locals>._impl.<locals>.codegen)r   r   r   r  )r   r  r   r   r  r   r     s    7zpoisson_impl1.<locals>._implc                    s    | S r   r   r  r   r   r   r   X  r   zpoisson_impl1.<locals>.<lambda>r   r  r   r   r   poisson_impl1  s    
;r  c                 C   sj   t | tjtjfr"t|r"dd S t | tjtjfrft |tjsZt |tjrft |jtjrfdd }|S d S )Nc                 S   s   t j| S r   r  )r  r   r   r   r   r   ^  r   zpoisson_impl2.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r4  )r   r   r  r   r   r   r   r  )r  r   r   r   rT   r   r   r   r   d  s
    zpoisson_impl2.<locals>._implr   )r  r   r   r   r   r   poisson_impl2[  s    

r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s2   | dkrt dtdttj   d|  S )Nr   zpower(): a <= 0r:   r   )r
  r   powr_  r   r   r  r^   r   r   r   r   p  s
    power_impl.<locals>._implr   r^   r   r   r   r   
power_implm  s    r   c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   powerr^   r   r   r   r   r   |  r   zpower_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  r^   r   r   r   rT   r   r   r   r     s
    
r  r   r^   r   r   r   r   r   r   y  s    c                   C   s   dd S )Nc                   S   s   t jdS r   r   r   rayleighr   r   r   r   r     r   z rayleigh_impl0.<locals>.<lambda>r   r   r   r   r   rayleigh_impl0  s    r  c                 C   s   t | tjtjfrtS d S r   )rx   r   r   ry   rayleigh_implrR  r   r   r   rayleigh_impl1  s    r
  c              	   C   s2   | dkrt d| tdtdtj    S )Nr   zrayleigh(): mode <= 0r   r   )r
  r   r   r   r   r   r	  r   r   r   r    s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r  )rR  r   r   r   r   r     r   z rayleigh_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  )rR  r   r   r   rT   r   r   r   r     s
    
zrayleigh_impl2.<locals>._implr   )rR  r   r   r   r   r   rayleigh_impl2  s    r  c                  C   s   dd } | S )Nc                   S   s   t j t j  S r   r   r   r   r   r   r     s    zcauchy_impl.<locals>._implr   r   r   r   r   cauchy_impl  s    r  c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   )r   r   standard_cauchyr   r   r   r   r     r   z&standard_cauchy_impl.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
z#standard_cauchy_impl.<locals>._implr   r   r   r   r   standard_cauchy_impl  s    r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s:   t j }t j| d }t| d | t| }|S r  )r   r   r   ro  r   r   )r  NGr  r   r   r   r     s    
zstandard_t_impl.<locals>._implr   r  r   r   r   standard_t_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   
standard_tr  r   r   r   r     r   z"standard_t_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  )r  r   r   r   rT   r   r   r   r     s
    
zstandard_t_impl2.<locals>._implr   )r  r   r   r   r   r   standard_t_impl2  s    r  c                 C   s(   t | tjr$t |tjr$dd }|S d S )Nc                 S   s   | dkrt d|dkr t d| d|  }tj }| | | }| ||td| | ||     }tj }|| | |  kr|S | |  | S d S )Nr   zwald(): mean <= 0zwald(): scale <= 0r      )r
  r   r   r   r   r   )meanr   Zmu_2lr  r  r  r   r   r   r     s    
&
zwald_impl.<locals>._implrz  )r  r   r   r   r   r   	wald_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   wald)r  r   r   r   r   r   r     r   zwald_impl2.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )r  r   r   r   r   rT   r   r   r   r     s
    
zwald_impl2.<locals>._implr   )r  r   r   r   r   r   r   
wald_impl2  s    r  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   | dkrt d| d }d| }dtj  }tj }tt|d|  }dd|  | }|dkr || |d  |d  || kr |S q d S )Nr   zzipf(): a <= 1r   g      r:   )r
  r   r   r3  r   r  )r^   Zam1r_   r  r  r  Tr   r   r   r     s    
(zipf_impl.<locals>._implrz  r  r   r   r   	zipf_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   zipfr  r   r   r   r     r   zzipf_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r4  )r   r   r  r   r   r   r   r  r  r   r   r   r     s
    r  r   r  r   r   r   r    s    c                    s\   t | tjstd|dkr&tjj n|dkr4tj | jdkrL fdd}n fdd}|S )Nz1The argument to shuffle() should be a buffer typer   r   r:   c                    sJ   | j d d }|dkrF |d }| | | |  | |< | |< |d8 }qd S r9   )shapearrijrandr   r   rK  0  s
    zdo_shuffle_impl.<locals>.implc                    sV   | j d d }|dkrR |d }t| | t| |  | |< | |< |d8 }qd S r9   )r  r   copyr  r"  r   r   rK  7  s
    &)	rx   r   Bufferr   r   r   r-  r  ndim)r  rngrK  r   r"  r   do_shuffle_impl%  s    

r(  c                 C   s
   t | dS rv   r(  r  r   r   r   shuffle_implA  s    r+  c                 C   s
   t | dS r~   r)  r*  r   r   r   r+  F  s    c                 C   s4   t | tjrdd }nt | tjr,dd }nd }|S )Nc                 S   s   t | }t j| |S r   )r   aranger   shuffle)r   rU   r   r   r   permutation_implN  s    
z*permutation_impl.<locals>.permutation_implc                 S   s   |   }tj| |S r   )r$  r   r   r-  )r   Zarr_copyr   r   r   r.  S  s    )rx   r   ry   Array)r   r.  r   r   r   r.  K  s    

r.  c                  G   s"   t | dkrdd }ndd }|S )Nr   c                  W   s
   t j S r   r   r   r   r   r   	rand_implc  s    zrand.<locals>.rand_implc                  W   s   t j| S r   r   r   r   r   r   r0  h  s    len)r   r0  r   r   r   r#  _  s    
r#  c                  G   s"   t | dkrdd }ndd }|S )Nr   c                  W   s
   t j S r   r   r   r   r   r   
randn_implr  s    zrandn.<locals>.randn_implc                  W   s   t j| S r   r   r   r   r   r   r3  w  s    r1  )r   r3  r   r   r   randnn  s    
r4  Tc                    s   t | tjrF| jdkst| j tdd tdd }tdd nFt | tjr~tj	 tdd td	d }td
d nt
d| f |d tjfkrdfdd	}nd fdd	}|S )Nr:   c                 S   s   t | S r   r1  r  r   r   r   get_source_size  s    zchoice.<locals>.get_source_sizec                 S   s   |   S r   )r$  r  r   r   r   copy_source  s    zchoice.<locals>.copy_sourcec                 S   s   | | S r   r   r^   Za_ir   r   r   getitem  s    zchoice.<locals>.getitemc                 S   s   | S r   r   r  r   r   r   r5    s    c                 S   s
   t | S r   )r   r,  r  r   r   r   r6    s    c                 S   s   |S r   r   r7  r   r   r   r8    s    z@np.random.choice() first argument should be int or array, got %sTc                    s     | }t jd|}| |S )zs
            choice() implementation returning a single sample
            (note *replace* is ignored)
            r   r,  )r^   r   replacer   r   )r5  r8  r   r   choice_impl  s    zchoice.<locals>.choice_implc           	         s   | }|rPt | }|j}tt|D ] }t jd|}| |||< q*|S t | }|j|krntdt j	| }|j}tt|D ]}|| ||< q|S dS )zO
            choice() implementation returning an array of samples
            r   z@Cannot take a larger sample than population when 'replace=False'N)
r   r   r   r   r2  r   r-  r   r
  permutation)	r^   r   r9  r   r   flr   r!  Z
permuted_ar   r5  r8  r   r   r:    s     
)NT)NT)rx   r   r/  r&  r   r   r   ry   r   r  r   r   )r^   r   r9  r6  r:  r   r=  r   choice  s0    




r>  c                    s   t j tdd t| tjs,td| f t|tjtjfsLtd|f |d tj	fkrld
 fdd	}nJt|tjrd fdd	}n,t|tj
rd fdd	}ntd	|f |S )Nc                 S   s   |j }|j}t|}td||D ]z}d}| }td|d D ]F}	||	 }
tj||
|  }|||	 < ||8 }|dkrx q||
8 }q:|dkr |||| d < q d S )Nr   r   r:   )r   r   r2  r   r   r   r  )r   pvalsr   r<  szplenr   p_sumZn_experimentsr!  Zp_jn_jr   r   r   multinomial_inner  s    
z&multinomial.<locals>.multinomial_innerz7np.random.multinomial(): n should be an integer, got %szEnp.random.multinomial(): pvals should be an array or sequence, got %sc                    s    t t| }| || |S )z5
            multinomial(..., size=None)
            r   zerosr2  r   r?  r   r   r   rD  r   r   multinomial_impl  s    z%multinomial.<locals>.multinomial_implc                    s$   t |t|f }| || |S )z4
            multinomial(..., size=int)
            rE  rG  rH  r   r   rI    s    c                    s&   t |t|f  }| || |S )z6
            multinomial(..., size=tuple)
            rE  rG  rH  r   r   rI    s    zDnp.random.multinomial(): size should be int or tuple or None, got %s)N)N)N)r   r  r   rx   r   ry   r   Sequencer/  r   	BaseTuple)r   r?  r   rI  r   rH  r   multinomial  s*    
	rL  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   t t| }t| | |S r   r   r   r2  dirichlet_arr)rY  r   r   r   r   dirichlet_impl+  s    
!dirichlet.<locals>.dirichlet_impl)rx   r   rJ  r/  )rY  rO  r   r   r   	dirichlet(  s    rQ  c                 C   s   t | tjtjfs td| f |d tjfkr:ddd}nJt |tjrRddd}n2t |tjrxt |jtjrxd	dd}ntd| |S )
NzCnp.random.dirichlet(): alpha should be an array or sequence, got %sc                 S   s   t t| }t| | |S r   rM  rY  r   r   r   r   r   rO  <  s    
rP  c                 S   s    t |t| f}t| | |S )z2
            dirichlet(..., size=int)
            rM  rR  r   r   r   rO  C  s    
c                 S   s"   t |t| f }t| | |S )z4
            dirichlet(..., size=tuple)
            rM  rR  r   r   r   rO  M  s    
zJnp.random.dirichlet(): size should be int or tuple of ints or None, got %s)N)N)N)	rx   r   rJ  r/  r   r   ry   r   r   )rY  r   rO  r   r   r   rQ  2  s(    	c           
      C   s   t | D ]}|dkrtdqt| }|j}|j}td||D ]j}d}t| D ]2\}}	tj	|	d||| < ||||  
 7 }qNt| D ]\}}	|||   |  < qq>d S )Nr   zdirichlet: alpha must be > 0.0r:   )iterr
  r2  r   r   r   	enumerater   r   r]  item)
rY  r   Za_vala_lenr   r   r   normr   r  r   r   r   rN  ^  s    
rN  c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s   t | | t| |S r   #validate_noncentral_chisquare_inputnoncentral_chisquare_singler  noncr   r   r   noncentral_chisquare_impl|  s    
7noncentral_chisquare.<locals>.noncentral_chisquare_implr   )r  r\  r]  r   r   r   noncentral_chisquarex  s     
r_  c                 C   s`   |d t jfkrddd}|S t|t jsBt|t jrPt|jt jrPddd}|S td| d S )Nc                 S   s   t | | t| |S r   rX  )r  r\  r   r   r   r   r]    s    
r^  c                 S   s<   t | | t|}|j}t|jD ]}t| |||< q$|S r   )rY  r   r   r   r   r   rZ  )r  r\  r   r   r   rT   r   r   r   r]    s    

zUnp.random.noncentral_chisquare(): size should be int or tuple of ints or None, got %s)N)N)r   r   rx   ry   r   r   r   )r  r\  r   r]  r   r   r   r_    s    

c                 C   sp   t |rt jS d| k rHt j| d }t j t | }|||  S t j|d }t j| d|  S d S )Nr:   r   r<   )r   isnannanr   r  r   r   r  )r  r\  chi2r   r   r   r   r   rZ    s    
rZ  c                 C   s$   | dkrt d|dk r t dd S )Nr   zdf <= 0znonc < 0r  r[  r   r   r   rY    s    rY  )NT)N)N)N)__doc__r   r   numpyr   llvmliter   numba.core.cgutilsr   numba.core.extendingr   r   r   numba.core.imputilsr   r   r	   numba.core.typingr   
numba.corer   r   numba.npr   numba.core.errorsr   registrylowerr)  r   ro   r   r   rZ   r  r   rM   LiteralStructType	ArrayTypeZrnd_state_tPointerTyper!   r-   r0   r1   r2   r8   r;   r=   r?   rE   rV   r`   ru   r|   r}   rz   r   random_samplesampleranfr   r   r  normalvariater   r   r   r   r   r   r   r   r   r   r   getrandbitsr   r  r  r  r  r  r*  r-  r+  r/  r1  r9  r;  r<  r>  r@  rA  rE  rF  rC  rL  rU  rQ  rT  rV  ru  r[  ro  r]  rW  rm  rs  betavariaterv  rZ  rt  rx  expovariater{  r  r~  r  r  r  r  r  r  r  lognormvariater  r  paretovariater  r  r  weibullvariater  r  r  r  vonmisesvariater  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  negative_binomialr  r  r  r  r  r  r   r  r  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r(  r-  r+  r;  r.  r#  r4  r>  rL  rQ  rN  r_  rZ  rY  r   r   r   r   <module>   s:  



1























(
F































;









































,



7

















































A




































V
P
	
+


