U
    í¾|ed½  ã                   @   sô	  d dl Z d dlZd dlZd dlZd dlmZ d dlmZ d dl	m
Z
mZmZmZmZmZmZ d dlmZmZmZmZmZmZ d dlmZmZ d dlmZ dd	„ Zd
d„ Zdd„ Zdd„ Z dd„ Z!dd„ Z"dd„ Z#e
e$ej%ej%ƒdd„ ƒZ&e
ej'ej%ej%ƒe
ej(ej%ej%ƒdd„ ƒƒZ)e
ej*ej%ej%ƒe
ej+ej%ej%ƒdd„ ƒƒZ,e
ej-ej%ej%ƒe
ej.ej%ej%ƒdd„ ƒƒZ/dd„ Z0d d!„ Z1e
ej2ej%ej3ƒe
ej4ej%ej3ƒe
ej2ej5ej3ƒe
ej4ej5ej3ƒd"d#„ ƒƒƒƒZ6d$d%„ Z7d&d'„ Z8d(d)„ Z9d*d+„ Z:d,d-„ Z;d.d/„ Z<d0d1„ Z=d2d3„ Z>d4d5„ Z?d6d7„ Z@d8d9„ ZAd:d;„ ZBd<d=„ ZCd>d?„ ZDd@dA„ ZEdBdC„ ZFdDdE„ ZGdFdG„ ZHdHdI„ ZIdJdK„ ZJdLdM„ ZKdNdO„ ZLdPdQ„ ZMe
ejNejOejOƒe?ƒ e
ejPejOejOƒe@ƒ e
ejQejOejOƒe;ƒ e
ejRejOejOƒe<ƒ e
ejSejOejOƒe=ƒ e
ejTejOejOƒe>ƒ e
ejUejOƒeLƒ e
ejVejOƒeMƒ dRdS„ ZWdTdU„ ZXeWƒ  eXƒ  dVdW„ ZYdXdY„ ZZdZd[„ Z[d\d]„ Z\d^d_„ Z]d`da„ Z^e
e$ej5ej5ƒdÌdbdc„ƒZ_dÍddde„Z`dÎdfdg„Zadhdi„ Zbdjdk„ Zcdldm„ Zddndo„ Zedpdq„ Zfdrds„ Zgdtdu„ Zhdvdw„ Zidxdy„ Zjdzd{„ Zkd|d}„ Zlej5Zme
ejnememƒeYƒ e
ejoememƒeYƒ e
ejpememƒeZƒ e
ejqememƒeZƒ e
ejrememƒe[ƒ e
ejsememƒe[ƒ e
ej'ememƒeaƒ e
ej(ememƒeaƒ e
ej*ememƒe\ƒ e
ej+ememƒe\ƒ e
ej-ememƒe`ƒ e
ej.ememƒe`ƒ e
ej2ememƒebƒ e
ej4ememƒebƒ e
e2ememƒebƒ e
ejNememƒegƒ e
ejPememƒehƒ e
ejQememƒecƒ e
ejRememƒedƒ e
ejSememƒeeƒ e
ejTememƒefƒ e
etemƒeiƒ e
ejUemƒejƒ e
ejVemƒekƒ [meejud~ƒdd€„ ƒZveejudƒd‚dƒ„ ƒZwe
d„ejuƒd…d†„ ƒZxd‡dˆ„ Zyd‰dŠ„ Zzd‹dŒ„ Z{ej5ej%fD ]0Z|ee|d~ƒeyƒ ee|dƒezƒ e
d„e|ƒe{ƒ qe
ej2ejuejuƒe
ej4ejuejuƒe
e2ejuejuƒddŽ„ ƒƒƒZ}dd„ Z~d‘d’„ Zd“d”„ Z€ed•ƒZ‚d–d—„ Zƒd˜d™„ Z„dšd›„ Z…dœd„ Z†dždŸ„ Z‡d d¡„ ZˆejuZme
ejnememƒe~ƒ e
ejoememƒe~ƒ e
ejpememƒeƒ e
ejqememƒeƒ e
ejrememƒe€ƒ e
ejsememƒe€ƒ e
ej*ememƒeƒƒ e
ej+ememƒeƒƒ e
ejUemƒe„ƒ e
ejVemƒe…ƒ e
ejNememƒe†ƒ e
ejPememƒe‡ƒ e
etemƒeˆƒ [me
d¢ej‰ƒe
d¢ejŠƒd£d¤„ ƒƒZ‹d¥d¦„ ZŒe
eej‰ƒd§d¨„ ƒZŽe
eej%ƒd©dª„ ƒZe
eej5ƒd«d¬„ ƒZe
eejuƒd­d®„ ƒZ‘ej%ej5ejufD ]Zme
ej’emƒeŒƒ q<e
ej’ejOƒeŒƒ eej3ej%ƒeej3ej5ƒeej3ejuƒd¯d°„ ƒƒƒZ“eej%ej%ƒd±d²„ ƒZ”eej%ej•ƒd³d´„ ƒZ–eej5ej5ƒdµd¶„ ƒZ—eej%ej5ƒd·d¸„ ƒZ˜eej5ej%ƒd¹dº„ ƒZ™eej5ejuƒeej%ejuƒd»d¼„ ƒƒZšeejuejuƒd½d¾„ ƒZ›eejœej‰ƒd¿dÀ„ ƒZeej‰ejŠƒdÁdÂ„ ƒZžeej3ej‰ƒeejŸej‰ƒdÃdÄ„ ƒƒZ eejuƒdÅdÆ„ ƒZ¡eej%ƒeej5ƒeej‰ƒdÇdÈ„ ƒƒƒZ¢dÉdÊ„ Z£eej5dËƒe£ƒ eej%dËƒe£ƒ dS )Ïé    N)Úir)ÚConstant)Úlower_builtinÚlower_getattrÚlower_getattr_genericÚ
lower_castÚlower_constantÚimpl_ret_borrowedÚimpl_ret_untracked)ÚtypingÚtypesÚutilsÚerrorsÚcgutilsÚoptional)Ú	intrinsicÚoverload_method©Úviewerc                 C   s   | j rdgS g S dS )z;
    Return the modifier flags for integer arithmetic.
    ÚnswN)Úsigned)Úrettype© r   úR/var/www/website-v5/atlas_env/lib/python3.8/site-packages/numba/cpython/numbers.pyÚ_int_arith_flags   s    r   c                 C   s\   |\}}|j \}}|  ||||j¡}|  ||||j¡}	|j||	t|jƒd}
t| ||j|
ƒS ©N)Úflags)ÚargsÚcastÚreturn_typeÚaddr   r
   ©ÚcontextÚbuilderÚsigr   ÚvaÚvbÚtaÚtbÚaÚbÚresr   r   r   Úint_add_impl#   s    
r,   c                 C   s\   |\}}|j \}}|  ||||j¡}|  ||||j¡}	|j||	t|jƒd}
t| ||j|
ƒS r   )r   r   r   Úsubr   r
   r!   r   r   r   Úint_sub_impl,   s    
r.   c                 C   s\   |\}}|j \}}|  ||||j¡}|  ||||j¡}	|j||	t|jƒd}
t| ||j|
ƒS r   )r   r   r   Úmulr   r
   r!   r   r   r   Úint_mul_impl5   s    
r0   c                 C   s`  |j |j kst‚|  d¡}|  d¡}t ||¡}t ||¡}| | d||  |j¡¡| d||  d¡¡¡}	|j| |	¡ddÈ | 	||¡}
| 
||¡}| d| ||¡|¡}| d||¡}| ||¡}| |¡j\}}| | |
|¡ | ||¡ W 5 Q R X |. | | |
|¡|¡ | | ||¡|¡ W 5 Q R X W 5 Q R X W 5 Q R X | |¡| |¡fS )	a@  
    Reference Objects/intobject.c
    xdivy = x / y;
    xmody = (long)(x - (unsigned long)xdivy * y);
    /* If the signs of x and y differ, and the remainder is non-0,
     * C89 doesn't define whether xdivy is now the floor or the
     * ceiling of the infinitely precise quotient.  We want the floor,
     * and we have it iff the remainder's sign matches y's.
     */
    if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
        xmody += y;
        --xdivy;
        assert(xmody && ((y ^ xmody) >= 0));
    }
    *p_xdivy = xdivy;
    *p_xmody = xmody;
    r   é   ú==éÿÿÿÿT©Úlikelyú<ú!=)ÚtypeÚAssertionErrorr   Úalloca_once_valueÚand_Úicmp_signedÚminvalÚif_thenÚnot_ÚsdivÚsremÚxorÚif_elseÚstorer-   r    Úload)r"   r#   ÚtyÚxÚyÚZEROÚONEZresdivZresmodZis_overflowZxdivyZxmodyZy_xor_xmody_ltzZxmody_istrueÚcondZif_different_signsZif_same_signsr   r   r   Úint_divmod_signed>   s.    

þ2rL   c                 C   s2   |j rt| ||||ƒS | ||¡| ||¡fS dS )zD
    Integer divmod(x, y).  The caller must ensure that y != 0.
    N)r   rL   ÚudivÚurem)r"   r#   rF   rG   rH   r   r   r   Ú
int_divmodw   s    rO   c              
   C   s  |\}}|j \}}|j}	t|	tjƒr*|	j}	|  ||||	¡}
|  ||||	¡}tj||
j	dd}tj||
j	dd}|j
t ||¡dd~\}}|. | j ||f¡s¸| ||¡ | ||¡ W 5 Q R X |2 t| ||	|
|ƒ\}}| ||¡ | ||¡ W 5 Q R X W 5 Q R X ||fS )NÚquot©ÚnameÚremFr4   )r   r   Ú
isinstancer   ÚUniTupleÚdtyper   r   Úalloca_oncer8   rC   Úis_scalar_zeroÚerror_modelÚfp_zero_divisionrD   rO   )r"   r#   r$   r   Zzerodiv_messager%   r&   r'   r(   rF   r)   r*   rP   rS   Úif_zeroÚif_non_zeroÚqÚrr   r   r   Ú_int_divmod_impl   s.    
 ÿ r_   c                 C   s0   t | |||dƒ\}}t || |¡| |¡f¡S )Nzinteger divmod by zero)r_   r   Ú
pack_arrayrE   ©r"   r#   r$   r   rP   rS   r   r   r   Úint_divmod_implŸ   s    
ÿÿrb   c                 C   s   t | |||dƒ\}}| |¡S )Nzinteger division by zero©r_   rE   ra   r   r   r   Úint_floordiv_impl¨   s    
ÿrd   c              	   C   sx   |\}}|j \}}|  ||||j¡}|  ||||j¡}	t ||	¡ | j |d¡ W 5 Q R X | ||	¡}
t| ||j|
ƒS )N©zdivision by zero)	r   r   r   r   r[   rY   rZ   Úfdivr
   r!   r   r   r   Úint_truediv_impl°   s    
rg   c                 C   s   t | |||dƒ\}}| |¡S )Nzinteger modulo by zerorc   ra   r   r   r   Úint_rem_impl½   s    
ÿrh   c                 C   s*   t |tjƒr"| jjs"d|jd > S dS d S )Nr3   r1   F)rT   r   ÚIntegerrY   Úraise_on_fp_zero_divisionÚbitwidth)r"   r   r   r   r   Ú_get_power_zerodiv_returnÅ   s
    ÿrl   c                    sR   t |jd tjƒ‰ |j‰t| ˆƒ‰‡ ‡‡fdd„}|  ||||¡}t| ||j|ƒS )z@
    a ^ b, where a is an integer or real, and b an integer
    r   c                    sº   ˆdƒ}ˆ| ƒ} |dk r`d}| }|dk r.t ‚ˆ rh| dkrJˆrBˆS tdƒ‚| dkrh| dkrhdS nd}|}|dkr€t | t|ƒ¡S |dkrª|d@ r˜|| 9 }|dL }| | 9 } q€|r¶d| S |S )	Nr1   r   Tú&0 cannot be raised to a negative powerr3   Fé   ç      ð?)ÚOverflowErrorÚZeroDivisionErrorÚmathÚpowÚfloat)r)   r*   r^   ÚinvertÚexp©Ú
is_integerÚtpÚzerodiv_returnr   r   Ú	int_powerÖ   s0    
z!int_power_impl.<locals>.int_power)rT   r   r   ri   r   rl   Úcompile_internalr
   )r"   r#   r$   r   r{   r+   r   rw   r   Úint_power_implÎ   s    
r}   c                    sü   |j d j}t|tjƒst‚t|ƒdkr,t‚|dk }t|ƒ}|j}t|tj	ƒ‰t
| |ƒ‰|  ˆ |d |j d |¡}|j}‡ ‡fdd„}	|dƒ}
|}|dkrÀ|d@ r¬|	|
|ƒ}
|dL }|	||ƒ}q’|røˆrÖ‡fdd„}ndd„ }|  ˆ |t ||¡|
f¡}
|
S )	zH
    a ^ b, where a is an integer or real, and b a constant integer
    r1   rn   r   c                    s    ˆrˆ   | |¡S ˆ  | |¡S d S ©N)r/   Úfmul)r)   r*   )r#   rx   r   r   r/     s    zstatic_power_impl.<locals>.mulc                    s4   | dkrˆ rˆ S t dƒ‚| dkr,| dkr,dS | S d S )Nr   rm   r1   r3   )rq   ©r)   )rz   r   r   Úinvert_impl$  s    z&static_power_impl.<locals>.invert_implc                 S   s   d|  S )Nro   r   r€   r   r   r   r   1  s    )r   ÚvaluerT   ÚnumbersÚIntegralÚNotImplementedErrorÚabsr   r   ri   rl   r   r8   r|   r   Ú	signature)r"   r#   r$   r   rv   ru   ry   ÚvalÚltyr/   r+   r)   r   r   )r#   rx   rz   r   Ústatic_power_implù   s:    


 ÿrŠ   c                 C   s   |j d|žŽ }t| ||j|ƒS ©Nr6   )r6   ©r<   r
   r   ©r"   r#   r$   r   r+   r   r   r   Úint_slt_impl:  s    rŽ   c                 C   s   |j d|žŽ }t| ||j|ƒS ©Nú<=)r   rŒ   r   r   r   r   Úint_sle_impl?  s    r‘   c                 C   s   |j d|žŽ }t| ||j|ƒS ©Nú>)r“   rŒ   r   r   r   r   Úint_sgt_implD  s    r”   c                 C   s   |j d|žŽ }t| ||j|ƒS ©Nú>=)r–   rŒ   r   r   r   r   Úint_sge_implI  s    r—   c                 C   s   |j d|žŽ }t| ||j|ƒS r‹   ©Úicmp_unsignedr
   r   r   r   r   r   Úint_ult_implN  s    rš   c                 C   s   |j d|žŽ }t| ||j|ƒS r   r˜   r   r   r   r   Úint_ule_implS  s    r›   c                 C   s   |j d|žŽ }t| ||j|ƒS r’   r˜   r   r   r   r   Úint_ugt_implX  s    rœ   c                 C   s   |j d|žŽ }t| ||j|ƒS r•   r˜   r   r   r   r   Úint_uge_impl]  s    r   c                 C   s   |j d|žŽ }t| ||j|ƒS ©Nr2   )r2   r˜   r   r   r   r   Úint_eq_implb  s    rŸ   c                 C   s   |j d|žŽ }t| ||j|ƒS ©Nr7   )r7   r˜   r   r   r   r   Úint_ne_implg  s    r¡   c           	      C   sH   |\}t |jd ƒ}| d||¡}| |¡}| |||¡}t| ||j|ƒS )Nr6   )r   r8   r<   ÚnegÚselectr
   r   )	r"   r#   r$   r   rG   rI   ZltzÚnegatedr+   r   r   r   Úint_abs_impll  s    
r¥   c                 C   s   |\}t | ||j|ƒS r~   ©r
   r   )r"   r#   r$   r   rG   r   r   r   Úuint_abs_implu  s    r§   c           	      C   sR   |j \}}|\}}|  ||||j¡}|  ||||j¡}| ||¡}t| ||j|ƒS r~   )r   r   r   Úshlr
   ©	r"   r#   r$   r   ÚvaltyZamttyrˆ   Úamtr+   r   r   r   Úint_shl_implz  s    
r¬   c           	      C   sh   |j \}}|\}}|  ||||j¡}|  ||||j¡}|jjrL| ||¡}n| ||¡}t| ||j|ƒS r~   )r   r   r   r   ÚashrÚlshrr
   r©   r   r   r   Úint_shr_implƒ  s    
r¯   c                 C   sR   |j \}}|\}}|  ||||j¡}|  ||||j¡}	| ||	¡}
t| ||j|
ƒS r~   )r   r   r   r;   r
   ©r"   r#   r$   r   ÚatÚbtÚavÚbvÚcavZcbcr+   r   r   r   Úint_and_impl  s    
r¶   c                 C   sR   |j \}}|\}}|  ||||j¡}|  ||||j¡}	| ||	¡}
t| ||j|
ƒS r~   )r   r   r   Úor_r
   r°   r   r   r   Úint_or_impl˜  s    
r¸   c                 C   sR   |j \}}|\}}|  ||||j¡}|  ||||j¡}	| ||	¡}
t| ||j|
ƒS r~   )r   r   r   rB   r
   r°   r   r   r   Úint_xor_impl¡  s    
r¹   c                 C   s:   |j \}|\}| |¡}|  ||||j¡}t| ||j|ƒS r~   )r   r¢   r   r   r
   ©r"   r#   r$   r   Útyprˆ   r+   r   r   r   Úint_negate_implª  s
    
r¼   c                 C   s0   |j \}|\}|  ||||j¡}t| ||j|ƒS r~   ©r   r   r   r
   rº   r   r   r   Úint_positive_impl³  s    r¾   c                 C   sR   |j \}|\}| |t|jtd|jj dƒƒ¡}|  ||||j¡}t| ||j|ƒS )NÚ1é   )	r   rB   r   r8   ÚintÚwidthr   r   r
   rº   r   r   r   Úint_invert_implº  s
    "rÃ   c              	   C   s`  |\}t |jdƒ}t |jdƒ}t |jdƒ}| d||¡}| d||¡}	t ||j¡}
| d¡}| d¡}| d¡}| d	¡}| d
¡}| |||¡ | |¡ | 	||
¡ | 
|¡ W 5 Q R X | |¡ | |	||¡ W 5 Q R X | |¡ | 	||
¡ | 
|¡ W 5 Q R X | |¡ | 	||
¡ | 
|¡ W 5 Q R X | |¡ | |
¡}t| ||j|ƒS )z
    np.sign(int)
    r1   r3   r   r2   r“   z.zeroz.postestz.posz.negz.exit)r   r8   r™   r<   r   rW   Úappend_basic_blockÚcbranchÚ
goto_blockrD   ÚbranchÚposition_at_endrE   r
   r   )r"   r#   r$   r   rG   ÚPOSÚNEGrI   Zcmp_zeroZcmp_posÚpresultZbb_zeroZ
bb_postestZbb_posZbb_negZbb_exitr+   r   r   r   Úint_sign_implÃ  s6    






rÌ   c                 C   s:   |j \}|\}|  ||||j¡}| |¡}t| ||j|ƒS r~   )r   r   r   r¢   r
   rº   r   r   r   Úbool_negate_implí  s
    
rÍ   c                 C   s0   |j \}|\}|  ||||j¡}t| ||j|ƒS r~   r½   rº   r   r   r   Úbool_unary_positive_implõ  s    rÎ   c                  C   sÊ  t j} ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj	| | ƒtƒ ttj
| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| ƒtƒ ttj| ƒtƒ ttj| | ƒtƒ ttj| | ƒtƒ tt| | ƒtƒ t jD ]–} ttj| | ƒt ƒ ttj!| | ƒt"ƒ ttj#| | ƒt$ƒ ttj%| | ƒt&ƒ ttjt j'| ƒtƒ ttjt j'| ƒtƒ ttt j'| ƒtƒ tt(| ƒt)ƒ q8ttjt j*t j*ƒt+ƒ ttj#t j*t j*ƒt+ƒ ttj!t j*t j*ƒt+ƒ ttj%t j*t j*ƒt+ƒ t j,D ]–} ttj| | ƒt+ƒ ttj!| | ƒt-ƒ ttj#| | ƒt.ƒ ttj%| | ƒt/ƒ ttjt j'| ƒtƒ ttjt j'| ƒtƒ ttt j'| ƒtƒ tt(| ƒt0ƒ q.d S r~   )1r   ri   r   Úoperatorr    r,   Úiaddr-   r.   Úisubr/   r0   ÚimulÚeqrŸ   Úner¡   Úlshiftr¬   ÚilshiftÚrshiftr¯   Úirshiftr¢   r¼   Úposr¾   rs   r}   ÚipowÚunsigned_domainÚltrš   Úler›   Úgtrœ   Úger   ÚFloatr†   r§   ÚIntegerLiteralrŽ   Úsigned_domainr‘   r”   r—   r¥   ©rF   r   r   r   Ú_implement_integer_operators  sP    

rä   c                  C   s’   t jt jfD ]€} ttj| | ƒtƒ ttj| | ƒtƒ ttj| | ƒt	ƒ ttj
| | ƒt	ƒ ttj| | ƒtƒ ttj| | ƒtƒ ttj| ƒtƒ qd S r~   )r   ÚBooleanri   r   rÏ   r;   r¶   Úiandr·   r¸   ÚiorrB   r¹   Úixorru   rÃ   rã   r   r   r   Ú_implement_bitwise_operators6  s    ré   c                 C   s   |j |Ž }t| ||j|ƒS r~   )Úfaddr
   r   r   r   r   r   Úreal_add_implF  s    
rë   c                 C   s   |j |Ž }t| ||j|ƒS r~   )Úfsubr
   r   r   r   r   r   Úreal_sub_implK  s    
rí   c                 C   s   |j |Ž }t| ||j|ƒS r~   )r   r
   r   r   r   r   r   Úreal_mul_implP  s    
rî   c              	   C   sD   t  ||d ¡ | j |d¡ W 5 Q R X |j|Ž }t| ||j|ƒS )Nr1   re   )r   r[   rY   rZ   rf   r
   r   r   r   r   r   Úreal_div_implU  s    
rï   c                 C   sÎ   |j |j kst‚|j }|j}|  d|j g¡}t |||t |¡f¡}t |||¡}|j	r¢d|_
t | d¡¡}	|j\}
}}t| |	|
|ƒ\}}|	 ||¡ |	 |¡ t ||¡}| ||||f¡}|| |¡fS )Nz.numba.python.remÚlinkonce_odrÚentry)r8   r9   ÚmoduleÚmanglerr   ÚFunctionTypeÚPointerTyper   Úget_or_insert_functionÚis_declarationÚlinkageÚ	IRBuilderrÄ   r   Úreal_divmod_func_bodyrD   ÚretrW   ÚcallrE   )r"   r#   rG   rH   Zfloattyrò   ÚfnameÚfntyÚfnZ	fnbuilderÚfxÚfyÚpmodÚdivÚmodZquotientr   r   r   Úreal_divmod\  s     
r  c                 C   sn  t  ||j¡}t  ||j¡}t  ||j¡}| ||¡}| | ||¡|¡}| ||¡ | ||¡ | d¡}	| d¡}
| d¡}| d||	¡}| d||	¡}| d||	¡}|j	|dd\}}|R | 
d||¡}| |¡. | | ||¡|¡ | | ||¡|¡ W 5 Q R X W 5 Q R X |  | ||
|	¡}| ||¡ W 5 Q R X W 5 Q R X ~~| |¡}| d||	¡}| |¡ tjtjdœ}|t|jƒ }|  tjt ||¡¡}|||gƒ}| ||¡}| ||¡}t|jd	ƒ}| d
||¡}| |||¡}| ||¡ W 5 Q R X t  ||¡> | ||¡}| ||¡ | | ||¡|¡}| ||¡ W 5 Q R X | |¡| |¡fS )Nç        g       €ro   r7   r6   Tr4   )rt   Údoubleg      à?r“   )r   rW   r8   Úfremrf   rì   rD   Úfcmp_unorderedÚfcmp_orderedrC   r™   r>   rê   r£   rE   r   Úfloat32Úfloat64ÚstrÚget_functionrr   Úfloorr   r‡   r   Úifnotr   )r"   r#   ZvxZwxr  ZpdivZ	pfloordivr  r  rI   ÚNZEROrJ   Z
mod_istrueZwx_ltzZmod_ltzZif_nonzero_modZif_zero_modZwx_ltz_ne_mod_ltzZ
div_istrueZrealtypemapZrealtypeZfloorfnÚfloordivZfloordivdiffZfloordivincrÚHALFÚpredr   r   r   rú   r  s\    .


( 
ÿ
ÿrú   c              
   C   sø   |\}}t j||jdd}t j||jdd}|jt  ||¡dd”\}	}
|	F | j |d|¡sŽ| ||¡}| ||¡}| 	||¡ | 	||¡ W 5 Q R X |
0 t
| |||ƒ\}}| 	||¡ | 	||¡ W 5 Q R X W 5 Q R X t  || |¡| |¡f¡S )NrP   rQ   rS   Fr4   ©zmodulo by zero)r   rW   r8   rC   rX   rY   rZ   rf   r  rD   r  r`   rE   )r"   r#   r$   r   ÚlocrG   rH   rP   rS   r[   r\   r]   r^   r   r   r   Úreal_divmod_implÞ  s,      ÿ ÿr  c              
   C   s¸   |\}}t  ||j¡}|jt  ||¡ddp\}}	|. | j |d|¡s`| ||¡}
| |
|¡ W 5 Q R X |	$ t	| |||ƒ\}}
| |
|¡ W 5 Q R X W 5 Q R X t
| ||j| |¡ƒS )NFr4   r  )r   rW   r8   rC   rX   rY   rZ   r  rD   r  r
   r   rE   )r"   r#   r$   r   r  rG   rH   r+   r[   r\   rS   Ú_r   r   r   Úreal_mod_implø  s$      ÿ 
ÿr  c              
   C   s¸   |\}}t  ||j¡}|jt  ||¡ddp\}}	|. | j |d|¡s`| ||¡}
| |
|¡ W 5 Q R X |	$ t	| |||ƒ\}
}| |
|¡ W 5 Q R X W 5 Q R X t
| ||j| |¡ƒS )NFr4   re   )r   rW   r8   rC   rX   rY   rZ   rf   rD   r  r
   r   rE   )r"   r#   r$   r   r  rG   rH   r+   r[   r\   rP   r  r   r   r   Úreal_floordiv_impl  s$      ÿ 
ÿr  c           
      C   s^   |\}}|j }| jr.|  tj|¡}|||ƒ}n | d|jg¡}	| |	||f¡}t| ||j	|ƒS )Nzllvm.pow)
rò   Úimplement_powi_as_math_callr  rr   rs   Údeclare_intrinsicr8   rü   r
   r   )
r"   r#   r$   r   rG   rH   rò   Úimpr+   rÿ   r   r   r   Úreal_power_impl  s    r  c                 C   s   |j d|žŽ }t| ||j|ƒS r‹   ©r
  r
   r   r   r   r   r   Úreal_lt_impl*  s    r   c                 C   s   |j d|žŽ }t| ||j|ƒS r   r  r   r   r   r   Úreal_le_impl/  s    r!  c                 C   s   |j d|žŽ }t| ||j|ƒS r’   r  r   r   r   r   Úreal_gt_impl4  s    r"  c                 C   s   |j d|žŽ }t| ||j|ƒS r•   r  r   r   r   r   Úreal_ge_impl9  s    r#  c                 C   s   |j d|žŽ }t| ||j|ƒS rž   r  r   r   r   r   Úreal_eq_impl>  s    r$  c                 C   s   |j d|žŽ }t| ||j|ƒS r    )r	  r
   r   r   r   r   r   Úreal_ne_implC  s    r%  c                 C   s,   |j \}t ||¡}|  tj|¡}|||ƒS r~   )r   r   r‡   r  rr   Úfabs)r"   r#   r$   r   rF   Úimplr   r   r   Úreal_abs_implH  s    r(  c                 C   s,   ddl m} | ||d ¡}t| ||j|ƒS ©Nr   ©Úmathimpl)Únumba.cpythonr+  Únegate_realr
   r   )r"   r#   r$   r   r+  r+   r   r   r   Úreal_negate_implO  s    r.  c                 C   s0   |j \}|\}|  ||||j¡}t| ||j|ƒS r~   r½   rº   r   r   r   Úreal_positive_implU  s    r/  c                 C   s  |\}t |jdƒ}t |jdƒ}t |jdƒ}t ||j¡}| d||¡}	| d||¡}
| |	¡ˆ\}}| | ||¡ W 5 Q R X |X | |
¡B\}}| | ||¡ W 5 Q R X | | ||¡ W 5 Q R X W 5 Q R X W 5 Q R X W 5 Q R X | |¡}t| ||j	|ƒS )z
    np.sign(float)
    r1   r3   r   r“   r6   )
r   r8   r   rW   r
  rC   rD   rE   r
   r   )r"   r#   r$   r   rG   rÉ   rÊ   rI   rË   Zis_posÚis_negZgt_zeroZnot_gt_zeroZlt_zeroZnot_lt_zeror+   r   r   r   Úreal_sign_impl\  s$    4
r1  Úrealc                 C   s$   | j |||d}|j}t| |||ƒS ©N©r‚   )Úmake_complexr2  r
   ©r"   r#   r»   r‚   Úcplxr+   r   r   r   Úcomplex_real_impl›  s    r8  Úimagc                 C   s$   | j |||d}|j}t| |||ƒS r3  )r5  r9  r
   r6  r   r   r   Úcomplex_imag_impl¡  s    r:  zcomplex.conjugatec                 C   sL   ddl m} |  ||jd |d ¡}| ||j¡|_| ¡ }t| ||j|ƒS r)  )	r,  r+  r5  r   r-  r9  Ú	_getvaluer
   r   )r"   r#   r$   r   r+  Úzr+   r   r   r   Úcomplex_conjugate_impl§  s
    r=  c                 C   s   t | |||ƒS r~   )r
   )r"   r#   r»   r‚   r   r   r   Úreal_real_impl¯  s    r>  c                 C   s   t  |j¡}t| |||ƒS r~   )r   Úget_null_valuer8   r
   )r"   r#   r»   r‚   r+   r   r   r   Úreal_imag_impl²  s    r@  c                 C   s   t | ||j|d ƒS ©Nr   r¦   ©r"   r#   r$   r   r   r   r   Úreal_conjugate_impl¶  s    rC  c              
   C   sx  |\}}|j d }|j}| j|||d}| j|||d}	|  ||¡}
|j}| ¡ }|	 ¡ }|
 ¡ }|  |d¡}|  |d¡}| d|	j|¡}| d|	j|¡}| 	||¡}| 
|¡¨\}}|8 t| ||||fƒ}| j|||d}|j|
_|j|
_W 5 Q R X |R tjdtjdi| }t t ¡ |jgd ¡}t |||¡}| ||||f¡ W 5 Q R X W 5 Q R X | |¡}t| ||j|ƒS )Nr   r4  rÀ   r2   Znumba_cpowfZ
numba_cpowé   )r   Úunderlying_floatÚmake_helperrò   Ú_getpointerÚget_constantr
  r2  r9  r;   rC   Úcomplex_mul_implr   Ú	complex64Ú
complex128r   rô   ÚVoidTyper8   r   rö   rü   rE   r
   r   )r"   r#   r$   r   ÚcaÚcbrF   Úftyr)   r*   Úcrò   ÚpaÚpbÚpcZTWOrI   Zb_real_is_twoZb_imag_is_zeroZb_is_twoÚthenÚ	otherwiser+   ÚcresÚ	func_namerþ   Úcpowr   r   r   Úcomplex_power_impl¿  sD    
  þý&
rY  c                 C   sŠ   |\}}|j d }| j|||d}| j|||d}|  ||¡}	|j}
|j}|j}|j}| |
|¡|	_| ||¡|	_|	 ¡ }t| ||j|ƒS ©Nr   r4  )r   r5  r2  r9  rê   r;  r
   r   ©r"   r#   r$   r   ÚcxÚcyrF   rG   rH   r<  r)   r*   rP  Údr+   r   r   r   Úcomplex_add_implë  s    
r_  c                 C   sŠ   |\}}|j d }| j|||d}| j|||d}|  ||¡}	|j}
|j}|j}|j}| |
|¡|	_| ||¡|	_|	 ¡ }t| ||j|ƒS rZ  )r   r5  r2  r9  rì   r;  r
   r   r[  r   r   r   Úcomplex_sub_implû  s    
r`  c                 C   sº   |\}}|j d }| j|||d}| j|||d}|  ||¡}	|j}
|j}|j}|j}| |
|¡}| ||¡}| |
|¡}| ||¡}| ||¡|	_| ||¡|	_|	 ¡ }t| ||j	|ƒS )z'
    (a+bi)(c+di)=(ac-bd)+i(ad+bc)
    r   r4  )
r   r5  r2  r9  r   rì   rê   r;  r
   r   )r"   r#   r$   r   r\  r]  rF   rG   rH   r<  r)   r*   rP  r^  ÚacZbdÚadÚbcr+   r   r   r   rI    s"    
rI  Únanc                 C   s(   dd„ }|   ||||¡}t| ||j|ƒS )Nc                 S   sÌ   | j }| j}|j }|j}|s(|s(tdƒ‚t|ƒt|ƒkr||sFtttƒS || }|||  }t|||  | |||  | ƒS |sŠtttƒS || }|| | }t| j | | j | | j| | j  | ƒS d S )Nzcomplex division by zero)r2  r9  rq   r†   ÚcomplexÚNAN)r)   r*   ZarealZaimagZbrealZbimagÚratioÚdenomr   r   r   Úcomplex_div%  s.    
þ
þz%complex_div_impl.<locals>.complex_div©r|   r
   r   )r"   r#   r$   r   ri  r+   r   r   r   Úcomplex_div_impl$  s    rk  c           	      C   sn   ddl m} |j\}|\}| j|||d}|  ||¡}| ||j¡|_| ||j¡|_| ¡ }t| ||j	|ƒS )Nr   r*  r4  )
r,  r+  r   r5  r-  r2  r9  r;  r
   r   )	r"   r#   r$   r   r+  r»   rˆ   Úcmplxr+   r   r   r   Úcomplex_negate_implD  s    rm  c                 C   s   |\}t | ||j|ƒS r~   r¦   ©r"   r#   r$   r   rˆ   r   r   r   Úcomplex_positive_implP  s    ro  c                 C   sr   |\}}|j d }| j|||d}| j|||d}| d|j|j¡}	| d|j|j¡}
| |	|
¡}t| ||j|ƒS )Nr   r4  r2   )r   r5  r
  r2  r9  r;   r
   r   )r"   r#   r$   r   r\  r]  r»   rG   rH   Zreals_are_eqZimags_are_eqr+   r   r   r   Úcomplex_eq_implU  s    
rp  c                 C   sr   |\}}|j d }| j|||d}| j|||d}| d|j|j¡}	| d|j|j¡}
| |	|
¡}t| ||j|ƒS )Nr   r4  r7   )r   r5  r	  r2  r9  r·   r
   r   )r"   r#   r$   r   r\  r]  r»   rG   rH   Zreals_are_neZimags_are_ner+   r   r   r   Úcomplex_ne_impla  s    
rq  c                 C   s(   dd„ }|   ||||¡}t| ||j|ƒS )z)
    abs(z) := hypot(z.real, z.imag)
    c                 S   s   t  | j| j¡S r~   )rr   Úhypotr2  r9  )r<  r   r   r   Úcomplex_absq  s    z%complex_abs_impl.<locals>.complex_absrj  )r"   r#   r$   r   rs  r+   r   r   r   Úcomplex_abs_implm  s    rt  znumber.itemc                 C   s   |d S )z;
    The no-op .item() method on booleans and numbers.
    r   r   rB  r   r   r   Únumber_item_implŽ  s    ru  c                 C   s:   |j \}|\}|  ||||j¡}| |¡}t| ||j|ƒS r~   )r   r   r   r?   r
   )r"   r#   r$   r   r»   rˆ   Úistruer+   r   r   r   Únumber_not_implš  s
    
rw  c                 C   s
   |\}|S r~   r   rn  r   r   r   Úbool_as_bool¡  s    rx  c                 C   s   |\}|  d|t|jdƒ¡S )Nr7   r   )r™   r   r8   rn  r   r   r   Úint_as_bool¦  s    ry  c                 C   s   |\}|  d|t|jdƒ¡S )Nr7   r  )r	  r   r8   rn  r   r   r   Úfloat_as_bool«  s    rz  c                 C   s^   |j \}|\}|  |||¡}|j|j }}t|jdƒ}	| d||	¡}
| d||	¡}| |
|¡S )Nr  r7   )r   r5  r2  r9  r   r8   r	  r·   )r"   r#   r$   r   r»   rˆ   rl  r2  r9  ÚzeroZreal_istrueZimag_istruer   r   r   Úcomplex_as_bool°  s    r|  c                 C   s$   |   ||j|j¡}|  |||j|¡S r~   )Úget_constant_genericÚliteral_typeÚliteral_valuer   ©r"   r#   ÚfromtyÚtotyrˆ   Úlitr   r   r   Úliteral_int_to_numberÈ  s    ýr„  c                 C   s\   |j |j kr|S |j |j k r.| ||  |¡¡S |jrF| ||  |¡¡S | ||  |¡¡S d S r~   )rk   ÚtruncÚget_value_typer   ÚsextÚzext©r"   r#   r  r‚  rˆ   r   r   r   Úinteger_to_integerÔ  s    rŠ  c                 C   s   |  ||  |¡¡S r~   )Úinttoptrr†  r‰  r   r   r   Úinteger_to_voidptrã  s    rŒ  c                 C   s2   |   |¡}|j|jk r"| ||¡S | ||¡S d S r~   )r†  rk   ÚfpextÚfptrunc©r"   r#   r  r‚  rˆ   r‰   r   r   r   Úfloat_to_floatç  s    
r  c                 C   s,   |   |¡}|jr| ||¡S | ||¡S d S r~   )r†  r   ÚsitofpÚuitofpr  r   r   r   Úinteger_to_floatï  s    
r“  c                 C   s,   |   |¡}|jr| ||¡S | ||¡S d S r~   )r†  r   ÚfptosiÚfptouir  r   r   r   Úfloat_to_integer÷  s    
r–  c                 C   s@   |   ||||j¡}|  |jd¡}|  ||¡}||_||_| ¡ S rA  )r   rE  rH  r5  r2  r9  r;  )r"   r#   r  r‚  rˆ   r2  r9  rl  r   r   r   Únon_complex_to_complexÿ  s    r—  c           	      C   sX   |j }|j }| j|||d}|  ||¡}|  ||j||¡|_|  ||j||¡|_| ¡ S r3  )rE  r5  r   r2  r9  r;  )	r"   r#   r  r‚  rˆ   ÚsrctyZdsttyÚsrcÚdstr   r   r   Úcomplex_to_complex
  s    r›  c                 C   s   |   |||¡S r~   )Úis_truer‰  r   r   r   Úany_to_boolean  s    r  c                 C   s$   |  |t d¡¡}|  ||tj|¡S )Né    )rˆ  r   ÚIntTyper   r   Úint32)r"   r#   r  r‚  rˆ   Úasintr   r   r   Úboolean_to_any  s    r¢  c                 C   s"   |   ||j|j¡}|  ||j|¡S r~   )r}  r~  r  rœ  r€  r   r   r   Úliteral_int_to_boolean  s    ýr£  c                 C   s4   |j }|  |||j¡}|  |||j¡}t ||f¡S r~   )rE  r}  r2  r9  r   Úliteral_struct)r"   r#   rF   ÚpyvalrO  r2  r9  r   r   r   Úconstant_complex,  s    r¦  c                 C   s&   t |tjƒrt|ƒ}|  |¡}||ƒS r~   )rT   ÚnpÚbool_Úboolr†  )r"   r#   rF   r¥  r‰   r   r   r   Úconstant_integer3  s    
rª  c                 C   sH   t | tjtjfƒrDt |tjjƒrD| j|jjkr8t 	d¡‚dd„ }|S dS )z) Typing for the np scalar 'view' method. zOChanging the dtype of a 0d array is only supported if the itemsize is unchangedc                 S   s
   t | |ƒS r~   r   )ÚscalarÚviewtyr   r   r   r'  M  s    zscalar_view.<locals>.implN)
rT   r   rà   ri   ÚabstractÚ	DTypeSpecrk   rV   r   ÚTypingError)r«  r¬  r'  r   r   r   Úscalar_viewD  s    ÿÿr°  Úview)N)N)N)¤rr   rƒ   Únumpyr§  rÏ   Úllvmliter   Úllvmlite.irr   Únumba.core.imputilsr   r   r   r   r   r	   r
   Ú
numba.corer   r   r   r   r   r   Únumba.core.extendingr   r   Znumba.cpython.unsafe.numbersr   r   r,   r.   r0   rL   rO   r_   Údivmodri   rb   r  Ú	ifloordivrd   ÚtruedivÚitruedivrg   r  Úimodrh   rl   r}   rs   rá   rÚ   rà   rŠ   rŽ   r‘   r”   r—   rš   r›   rœ   r   rŸ   r¡   r¥   r§   r¬   r¯   r¶   r¸   r¹   r¼   r¾   rÃ   rÌ   rÍ   rÎ   rÓ   ÚbooleanrÔ   rÜ   rÝ   rÞ   rß   r¢   rÙ   rä   ré   rë   rí   rî   rï   r  rú   r  r  r  r  r   r!  r"  r#  r$  r%  r(  r.  r/  r1  rF   r    rÐ   r-   rÑ   r/   rÒ   r†   ÚComplexr8  r:  r=  r>  r@  rC  ÚclsrY  r_  r`  rI  rt   rf  rk  rm  ro  rp  rq  rt  rå   ÚNumberru  rw  r©  rx  ry  rz  r|  r?   r„  rŠ  ÚvoidptrrŒ  r  r“  r–  r—  r›  ÚAnyr  r¢  ÚBooleanLiteralr£  r¦  rª  r°  r   r   r   r   Ú<module>   s   $ 			9

	+=							*0l







) 










		




	




