U
    mdU                  S   @   s  d dl Z d dlmZ d dlZd dlZd dlZd dlmZ d dl	Z
d dlZd dlZd dlmZmZ d dlmZ d dlmZmZ dddd	d
ddddddddddddddddddddddd d!d"dd#d$d%dd&d'd(d)d*d+d,d-d.d/d0d1d2d2d3d4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdddDdEdFdGdHdIdJdKdLddMdNdOdPdQgSZdRgZdSdTdUdVgZdWZdXZdYZdZZd[ZeeeeegZg efd\gefd]gefd^gefd_geeegfd`d`d`dageeedbgfd\dageeedbgfd]dageeedbgfdcgegfddgeegfd]ddgeegfdegeegfdfgeeegfd\dfgeeegfd]dfgeeegfgZg Z eD ]r\Z!Z"e!dkrNe #dge"  nLdg$dh$e!difdjdk e!D ddmdk e!D dZ%e"D ]Z&e 'e%e&  qq*ej(dodp Z)ej*j+dqe,ee-e.edrej*+dsdtdudvdwdxgej*j+dpdygdzd{ede/ d|krd}nd d~dd Z0ej*j+dqe,ee-e.edrej*+dsdtdwgej*j+dpdgdzd{eddgddddddiddd Z1ej*j+dqe,ee-e.edrej*+dsdwgej*j+dpdgdzd{eddgddd Z2ej*j+dqe,e e-e.e drej*+dsdtdudvdwdxgej*j+dpdgdzd{eddge/ d|kr<d}nd ddd Z3edgddd Z4dd Z5ej*j+ddddddddddddddddddde6dfddddddddgddddddddddddddddddddddddddgdrdd̈́ Z7ddτ Z8ddф Z9edgdddӄ Z:edgdddՄ Z;edgdddׄ Z<edgdddل Z=ddۄ Z>dd݄ Z?ej*+ddtdddddgfdudddgfgdd Z@dd ZAedgddiddd ZBdd ZCdd ZDdd ZEdS )    N)Path)ElementTree)check_figures_equalimage_comparison)mathtext	_mathtextz$a+b+\dot s+\dot{s}+\ldots$z$$x\hspace{-0.2}\doteq\hspace{-0.2}y$z\$100.00 $\alpha \_$z$\frac{\$100.00}{y}$z$x   y$z$x+y\ x=y\ x<y\ x:y\ x,y\ x@y$z$100\%y\ x*y\ x/y x\$y$z $x\leftarrow y\ x\forall y\ x-y$z$x \sf x \bf x {\cal X} \rm x$z-$x\ x\,x\;x\quad x\qquad x\!x\hspace{ 0.5 }y$z$\{ \rm braces \}$zF$\left[\left\lfloor\frac{5}{\frac{\left(3\right)}{4}} y\right)\right]$z$\left(x\right)$z	$\sin(x)$z$x_2$$x^2$z$x^2_y$z$x_y^2$z$\sum _{\genfrac{}{}{0}{}{0\leq i\leq m}{0<j<n}}f\left(i,j\right)\mathcal{R}\prod_{i=\alpha_{i+1}}^\infty a_i \sin(2 \pi f x_i)\sqrt[2]{\prod^\frac{x}{2\pi^2}_\infty}$z)$x = \frac{x+\frac{5}{2}}{\frac{y+3}{8}}$z-$dz/dt = \gamma x^2 + {\rm sin}(2\pi y+\phi)$z?Foo: $\alpha_{i+1}^j = {\rm sin}(2\pi f_j t_i) e^{-5 t_i/\tau}$zVariable $i$ is goodz$\Delta_i^j$z$\Delta^j_{i+1}$zA$\ddot{o}\acute{e}\grave{e}\hat{O}\breve{\imath}\tilde{n}\vec{q}$z$\arccos((x^i))$z)$\gamma = \frac{x=\frac{6}{8}}{y} \delta$z$\limsup_{x\to\infty}$z%$f'\quad f'''(x)\quad ''/\mathrm{yr}$z$\frac{x_2888}{y}$z$\sqrt[3]{\frac{X_2}{Y}}=5$z$\sqrt[3]{x}=5$z$\frac{X}{\frac{X}{Y}}$a  $W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$z?$\mathcal{H} = \int d \tau \left(\epsilon E^2 + \mu H^2\right)$z$\widehat{abc}\widetilde{def}$zG$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$z$\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \lambda \mu \nu \xi \pi \kappa \rho \sigma \tau \upsilon \phi \chi \psi$z${x}^{2}{y}^{2}$z${}_{2}F_{3}$z$\frac{x+{y}^{2}}{k+1}$z$x+{y}^{\frac{2}{k+1}}$z$\frac{a}{b/2}$zQ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\frac{1}{{a}_{4}}}}}$z$\binom{n}{k/2}$z?$\binom{p}{2}{x}^{2}{y}^{p-2}-\frac{1}{1-x}\frac{1}{1-{x}^{2}}$z
${x}^{2y}$zG$\sum _{i=1}^{p}\sum _{j=1}^{q}\sum _{k=1}^{r}{a}_{ij}{b}_{jk}{c}_{ki}$zB$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}}$z$\left(\frac{{\partial }^{2}}{\partial {x}^{2}}+\frac{{\partial }^{2}}{\partial {y}^{2}}\right){|\varphi \left(x+iy\right)|}^{2}=0$z${2}^{{2}^{{2}^{x}}}$z&${\int }_{1}^{x}\frac{\mathrm{dt}}{t}$z)$\int {\int }_{D}\mathrm{dx} \mathrm{dy}$z${y}_{{x}^{2}}$z${y}_{{x}_{2}}$z${x}_{92}^{31415}+\pi $z!${x}_{{y}_{b}^{a}}^{{z}_{c}^{d}}$z!${y}_{3}^{\prime \prime \prime }$z+$\left( \xi \left( 1 - \xi \right) \right)$z$\left(2 \, a=b\right)$z$? ! &$z$\left\Vert \frac{a}{b} \right\Vert \left\vert \frac{a}{b} \right\vert \left\| \frac{a}{b}\right\| \left| \frac{a}{b} \right| \Vert a \Vert \vert b \vert \| a \| | b |$z$\mathring{A}  \AA$zN$M \, M \thinspace M \/ M \> M \: M \; M \ M \enspace M \quad M \qquad M \! M$z<$\Cap$ $\Cup$ $\leftharpoonup$ $\barwedge$ $\rightharpoonup$zv$\hspace{-0.2}\dotplus\hspace{-0.2}$ $\hspace{-0.2}\doteq\hspace{-0.2}$ $\hspace{-0.2}\doteqdot\hspace{-0.2}$ $\ddots$z1$xyz^kx_kx^py^{p-2} d_i^jb_jc_kd x^j_i E^0 E^0_u$zW${xyz}^k{x}_{k}{x}^{p}{y}^{p-2} {d}_{i}^{j}{b}_{j}{c}_{k}{d} {x}^{j}_{i}{E}^{0}{E}^0_u$ze${\int}_x^x x\oint_x^x x\int_{X}^{X}x\int_x x \int^x x \int_{x} x\int^{x}{\int}_{x} x{\int}^{x}_{x}x$ztesting$^{123}$z4$6-2$; $-2$; $ -2$; ${-2}$; ${  -2}$; $20^{+3}_{-2}$z%$\overline{\omega}^x \frac{1}{2}_0^x$z4$,$ $.$ $1{,}234{, }567{ , }890$ and $1,234,567,890$z$\left(X\right)_{a}^{b}$z$\dfrac{\$100.00}{y}$z$-$-z$\sqrt[ab]{123}$zy$x \overset{f}{\rightarrow} \overset{f}{x} \underset{xx}{ff} \overset{xx}{ff} \underset{f}{x} \underset{f}{\leftarrow} x$zc$\sum x\quad\sum^nx\quad\sum_nx\quad\sum_n^nx\quad\prod x\quad\prod^nx\quad\prod_nx\quad\prod_n^nx$z&$1.$ $2.$ $19680801.$ $a.$ $b.$ $mpl.$
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzzE\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omegaz\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \lambda \mu \nu \xi \pi \kappa \rho \sigma \tau \upsilon \phi \chi \psiZmathrmZmathbfZmathitZmathtt)N   Zmathbbz\Gamma \Pi \Sigma \gamma \piZmathcalZmathfrakZmathscrZmathsf  z $c                 c   s   | ]}d | V  qdS )z\%s{N .0fontr   r   W/home/sam/Atlas/atlas_env/lib/python3.8/site-packages/matplotlib/tests/test_mathtext.py	<genexpr>   s     r   %sc                 c   s   | ]
}d V  qdS )}Nr   r   r   r   r   r      s     $c                 C   s$   |d krt d d| j||f gS )Nztest has been removedz
%s_%s_%02d)pytestskipparam)requestfontsetindextextr   r   r   baseline_images   s    
r   zindex, text)Zidsr   cmstixstixsans
dejavusansZdejavuserifr   T)Zindirect)ppc64les390xgI+?)r   tolc                 C   s.   |t jd< tjdd}|jdd|ddd d S Nmathtext.fontsetg      @g      ?Zfigsize      ?centerhorizontalalignmentverticalalignmentmplrcParamspltfigurer   r   r   r   r   figr   r   r   test_mathtext_rendering   s    

 r7   Z	mathtext0svgmetadata)ZCreatorDateZFormatType)r   
extensionssavefig_kwargc                 C   sF   |t jd< dt jd< tjdd}|jjdd |jdd|d	d	d
 d S )Nr(   nonesvg.fonttyper)   r*   F)visibler+   r,   r-   )r1   r2   r3   r4   patchsetr   r5   r   r   r   !test_mathtext_rendering_svgastext   s    	


 rC   Z	mathtext1Zpng)r   r<   c                 C   s&   t jdd}|jdd||ddd d S )Nr)   r*   r+   r,   )math_fontfamilyr.   r/   r3   r4   r   r5   r   r   r   #test_mathtext_rendering_lightweight   s
     rF   Zmathfont)r   r<   r&   c                 C   s.   |t jd< tjdd}|jdd|ddd d S r'   r0   r5   r   r   r   test_mathfont_rendering   s    

 rG   )r<   c              	      s   t jj dd  D }g }|D ]$ fdd D \}|| q| dddddd	 |D  d  |ddddd
d	 |D  d  d S )Nc                 S   s   g | ]}t |d kr|qS    lenr   sr   r   r   
<listcomp>   s      z+test_short_long_accents.<locals>.<listcomp>c                    s,   g | ]$}t |d kr |   kr|qS rH   rJ   r   lZacc_maprM   r   r   rN     s       r   r+   r   r   c                 s   s   | ]}d | dV  qdS )\aNr   rL   r   r   r   r     s     z*test_short_long_accents.<locals>.<genexpr>c                 s   s   | ]}d | dV  qdS )rR   z aNr   rO   r   r   r   r     s     )r   ParserZ_accent_mapappendr   join)fig_testfig_refZ
short_accsZcorresponding_long_accsrP   r   rQ   r   test_short_long_accents   s    &  rY   c                  C   s6   t jd} t j| }|d}|d dks2td S )NDejaVu Sansheadversion)rI   r   )r1   font_managerZfindfontZft2fontZFT2FontZget_sfnt_tableAssertionError)Zfontpathr   tabler   r   r   test_fontinfo
  s    
r`   z	math, msg)z$\hspace{}$Expected \hspace{space})z$\hspace{foo}$ra   )z$\sinx$zUnknown symbol: \sinx)z$\dotx$zUnknown symbol: \dotx)z$\frac$Expected \frac{num}{den})z$\frac{}{}$rb   )z$\binom$Expected \binom{num}{den})z$\binom{}{}$rc   )z
$\genfrac$<Expected \genfrac{ldelim}{rdelim}{rulesize}{style}{num}{den})z$\genfrac{}{}{}{}{}{}$rd   )z$\sqrt$Expected \sqrt{value})z	$\sqrt f$re   )z$\overline$Expected \overline{body})z$\overline{}$rf   )z$\leftF$Expected a delimiter)z	$\rightF$zUnknown symbol: \rightF)z$\left(\right$rg   z$\left($zExpected ("|\'\\)\\right["\'])z$\dfrac$Expected \dfrac{num}{den})z$\dfrac{}{}$rh   )z
$\overset$z#Expected \overset{annotation}{body})z$\underset$z$Expected \underset{annotation}{body})z$\foo$zUnknown symbol: \foo)z$a^2^2$Double superscript)z$a_2_2$zDouble subscript)z	$a^2_a^2$ri   zhspace without valuezhspace with invalid valuezfunction without spacezaccent without spacezfrac without parameterszfrac with empty parameterszbinom without parameterszbinom with empty parameterszgenfrac without parameterszgenfrac with empty parameterszsqrt without parameterszsqrt with invalid valuezoverline without parameterszoverline with empty parameterzleft with invalid delimiterzright with invalid delimiterz unclosed parentheses with sizingz#unclosed parentheses without sizingzdfrac without parameterszdfrac with empty parameterszoverset without parameterszunderset without parameterszunknown symbolzdouble superscriptzdouble subscriptzsuper on sub without bracesc              	   C   sJ   t d}t|trt|n|}tjt|d |	|  W 5 Q R X d S )NZaggmatch)
r   ZMathTextParser
isinstancestrreescaper   raises
ValueErrorparse)mathmsgparserrk   r   r   r   test_mathtext_exceptions  s    @
rv   c                	   C   s$   t t td W 5 Q R X d S )Nz\foo)r   rp   rq   r   Zget_unicode_indexr   r   r   r    test_get_unicode_index_exceptionW  s    rw   c                  C   sF   t  } | ddd | j  t| jj }|dk	 sBt
d S )Nr+   z$-$   )r3   r4   r   canvasdrawnpZasarrayrendererZbuffer_rgbaanyr^   )r6   tr   r   r   test_single_minus_sign\  s
    
r   c                 C   s    |  ddd | ddd d S )Nr+   z$1\,2\>3\ 4$z$1\/2\:3~4$r   rW   rX   r   r   r   test_spacesd  s    r   c                 C   s   |  ddd |  ddd |  ddd |  ddd |  dd	d
 |  ddd |  ddd |  ddd |  ddd | ddd | ddd | ddd | ddd | dd	d | ddd | ddd | ddd | ddd d S )N皙?z$\log 6$皙?z	$\log(6)$333333?z$\arcsin 6$皙?z$\arcsin|6|$r+   z$\operatorname{op} 6$g333333?z$\operatorname{op}[6]$ffffff?z$\cos^2$g?z$\log_2$g?z$\sin^2 \cos$z$\mathrm{log\,}6$z$\mathrm{log}(6)$z$\mathrm{arcsin\,}6$z$\mathrm{arcsin}|6|$z$\mathrm{op\,}6$z$\mathrm{op}[6]$z$\mathrm{cos}^2$z$\mathrm{log}_2$z$\mathrm{sin}^2 \mathrm{\,cos}$r   r   r   r   r   test_operator_spacej  s$    r   c                 C   s(   | j ddddd |j ddddd d S )Nr+   z$\left)\right($r#   )rD   z$)($r   r   r   r   r   test_inverted_delimiters  s    r   c                 C   sD   |  ddd tjjd d tjd tjd d}| ddd|  d S )Nr   z$\dfrac{2x}{3y}$z	font.sizezsavefig.dpi)fontsizedpiz$\genfrac{}{}{%f}{0}{2x}{3y}$)r   r   ZTruetypeFontsZget_underline_thicknessr1   r2   )rW   rX   Z	thicknessr   r   r   test_genfrac_displaystyle  s      r   c                  C   s   dD ]} | t jd< qd S )N)r    r!   r"   Nonemathtext.fallback)r1   r2   fallbackr   r   r   test_mathtext_fallback_valid  s    r   c               
   C   s2   dD ](} t jtdd | tjd< W 5 Q R X qd S )N)abcr   znot a valid fallback font namerj   r   )r   rp   rq   r1   r2   r   r   r   r   test_mathtext_fallback_invalid  s    r   zfallback,fontlistrZ   mpltestZSTIXGeneralcmr10c                 C   s   t jjttt jd  dt j	d< dt j	d< dt j	d< dt j	d	< d
t j	d< | t j	d< d}t
 }t \}}|jdd|ddd |j|dd t| d}dd |D }||kstt jjj  d S )Nzmpltest.ttfr>   r?   Zcustomr(   r   zmathtext.rmzmpltest:italiczmathtext.itzmpltest:boldzmathtext.bfr   za$A\AA\breve\gimel$r+   (   r,   )r   Zhar8   )formatz,.//{http://www.w3.org/2000/svg}tspan[@style]c                 S   s    g | ]}t |jd  d qS )style)shlexsplitZattrib)r   Ztspanr   r   r   rN     s     z*test_mathtext_fallback.<locals>.<listcomp>)r1   r]   ZfontManagerZaddfontrm   r   __file__resolveparentr2   ioBytesIOr3   subplotsr   ZsavefigET
fromstringgetvaluefindallr^   Zttflistpop)r   Zfontlisttest_strZbuffr6   axZtspansZ
char_fontsr   r   r   test_mathtext_fallback  s(    





r   c                 C   s>   t dt| d t dt  t jdt dd d S )Nr   zexample.pngZMaroon)color)r   Zmath_to_imagerm   rV   r   r   )Ztmpdirr   r   r   test_math_to_image  s    r   zmath_fontfamily_image.pngr   r   )r   r=   c                  C   s8   t jdd} | jdddddd | jdd	d
ddd d S )N)
   r   r*   r   r   z%$This\ text\ should\ have\ one\ font$   r#   )sizerD   r   z#$This\ text\ should\ have\ another$r!   rE   )r6   r   r   r   test_math_fontfamily  s    
 
 r   c                  C   sz   dt jd< d} t \}}|jdd| dd}| }| dksDt|jdd| dd}| }| dksnt|  d S )	Nr    r(   abc$abc\alpha$r   Arial)r   r   )fontproperties	r1   r2   r3   r   r   Zget_fontpropertiesZget_math_fontfamilyr^   Zdraw_without_rendering)r   r6   r   text1prop1text2prop2r   r   r   test_default_math_fontfamily  s    
r   c                  C   s   dt jd< d} t \}}|jdd| ddd}| }| dksFt|jdd| ddd	}| }| dksrt|jd
d
| ddd}| }| dkst|jdd| ddd}	|	 }
|
 dkst|  d S )Nr    r(   r   r   r#   r   )rD   r   r   )rD   r   r   )r   rD   r   )r   rD   r   )r   r6   r   r   r   r   r   Ztext3Zprop3Ztext4Zprop4r   r   r   test_argument_order  s8    

 
 
 
 r   c                  C   sF   dt jd< dt jd< t \} }|tddtdd | j  d S )Nr   zfont.familyTzaxes.formatter.use_mathtextr   rI   )r1   r2   r3   r   Zplotrangery   rz   )r6   r   r   r   r   test_mathtext_cmr10_minus_sign  s
    

r   )r   )r   )Fr   pathlibr   platformrn   r   Z	xml.etreer   r   numpyr{   r   Z
matplotlibr1   Zmatplotlib.testing.decoratorsr   r   Zmatplotlib.pyplotZpyplotr3   r   r   Z
math_testsZsvgastext_math_testsZlightweight_math_testsdigitsZ	uppercaseZ	lowercaseZ
uppergreekZ
lowergreekallZfont_test_specsZ
font_testsZfontscharsextendrV   wrapperrB   rU   Zfixturer   markZparametrize	enumerater   rK   machiner7   rC   rF   rG   rY   r`   compilerv   rw   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   sD  i


  
  
 
    	
  
 

!?








	

